Publications by authors named "Kurtukian-Nieto T"

The β decays from both the ground state and a long-lived isomer of ^{133}In were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to β, γ, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant β-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their β decays selectively populate only a few isolated neutron unbound states in ^{133}Sn.

View Article and Find Full Text PDF

When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning; this phenomenon has been a mystery in nuclear physics for over 40 years. The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum.

View Article and Find Full Text PDF

In an experiment with the BigRIPS separator at the RIKEN Nishina Center, we observed two-proton (2p) emission from ^{67}Kr. At the same time, no evidence for 2p emission of ^{59}Ge and ^{63}Se, two other potential candidates for this exotic radioactivity, could be observed. This observation is in line with Q value predictions which pointed to ^{67}Kr as being the best new candidate among the three for two-proton radioactivity.

View Article and Find Full Text PDF

This Letter reports on a systematic study of β-decay half-lives of neutron-rich nuclei around doubly magic (208)Pb. The lifetimes of the 126-neutron shell isotone (204)Pt and the neighboring (200-202)Ir, (203)Pt, (204)Au are presented together with other 19 half-lives measured during the "stopped beam" campaign of the rare isotope investigations at GSI collaboration. The results constrain the main nuclear theories used in calculations of r-process nucleosynthesis.

View Article and Find Full Text PDF

We report the observation of a very exotic decay mode at the proton drip line, the β-delayed γ-proton decay, clearly seen in the β decay of the T_{z}=-2 nucleus ^{56}Zn. Three γ-proton sequences have been observed after the β decay. Here this decay mode, already observed in the sd shell, is seen for the first time in the fp shell.

View Article and Find Full Text PDF

The two protons emitted in the decay of 54Zn have been individually observed for the first time in a time projection chamber. The total decay energy and the half-life measured in this work agree with the results obtained in a previous experiment. Angular and energy correlations between the two protons are determined and compared to theoretical distributions of a three-body model.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how 56Fe spallation occurs when it collides with hydrogen at high energy (1A GeV), utilizing the SPALADIN setup at GSI in a method called inverse kinematics.
  • The research focuses on measuring the coincidence of low-energy light particles and fragments, which allows for a breakdown of the total reaction cross section into various deexcitation pathways.
  • The findings indicate that among different deexcitation models tested, only the GEMINI model accurately explains the majority of the experimental results, suggesting that in this light system, multifragmentation may not be necessary to account for the observations.
View Article and Find Full Text PDF