Thickening of the inflamed intestinal wall involves growth of smooth muscle cells (SMC), which contributes to stricture formation. Earlier, the growth factor platelet-derived growth factor (PDGF)-BB was identified as a key mitogen for SMC from the rat colon (CSMC), and CSMC growth in colitis was associated with both appearance of its receptor, PDGF-Rβ and modulation of phenotype. Here, we examined the role of inflammatory cytokines in inducing and modulating the growth response to PDGF-BB.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
June 2010
Hyperplasia of smooth muscle contributes to the thickening of the intestinal wall that is characteristic of inflammation, but the mechanisms of growth control are unknown. Nitric oxide (NO) from enteric neurons expressing neuronal NO synthase (nNOS) might normally inhibit intestinal smooth muscle cell (ISMC) growth, and this was tested in vitro. In ISMC from the circular smooth muscle of the adult rat colon, chemical NO donors inhibited [(3)H]thymidine uptake in response to FCS, reducing this to baseline without toxicity.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2009
Damage to the enteric nervous system is implicated in human disease and animal models of inflammatory bowel disease, diabetes, and Parkinson's disease, but the mechanism of death and the response of surviving neurons are poorly understood. We explored this in a coculture model of myenteric neurons, glia, and smooth muscle during exposure to the established or potential neurotoxins botulinum A, hydrogen peroxide, and acrylamide. Neuronal survival, axonal degeneration and regeneration, and neurotransmitter release were assessed during acute exposure (0-24 h) to neurotoxin and subsequent recovery (96-144 h).
View Article and Find Full Text PDF