The Schottky barrier of a metal-semiconductor junction is one of the key quantities affecting the charge transport in a transistor. The Schottky barrier height depends on several factors, such as work function difference, local atomic configuration in the interface, and impurity doping. We show that also the presence of interface states at 2D metal-semiconductor junctions can give rise to a large renormalization of the effective Schottky barrier determined from the temperature dependence of the current.
View Article and Find Full Text PDFQuantumATK is an integrated set of atomic-scale modelling tools developed since 2003 by professional software engineers in collaboration with academic researchers. While different aspects and individual modules of the platform have been previously presented, the purpose of this paper is to give a general overview of the platform. The QuantumATK simulation engines enable electronic-structure calculations using density functional theory or tight-binding model Hamiltonians, and also offers bonded or reactive empirical force fields in many different parametrizations.
View Article and Find Full Text PDFIt is natural to characterize materials in transport junctions by their conductance length dependence, β. Theoretical estimations of β are made employing two primary theories: complex band structure and density functional theory (DFT) Landauer transport. It has previously been shown that the β value derived from total Landauer transmission can be related to the β value from the smallest |k| complex band; however, it is an open question whether there is a deeper relationship between the two.
View Article and Find Full Text PDFThe control of recently observed spintronic effects in topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted by the lack of understanding of band structure and spin textures around their interfaces. Here we combine density functional theory with Green's function techniques to obtain the spectral function at any plane passing through atoms of BiSe and Co or Cu layers comprising the interface. Instead of naively assumed Dirac cone gapped by the proximity exchange field spectral function, we find that the Rashba ferromagnetic model describes the spectral function on the surface of BiSe in contact with Co near the Fermi level E, where circular and snowflake-like constant energy contours coexist around which spin locks to momentum.
View Article and Find Full Text PDFJ Phys Condens Matter
May 2017
The geometry and structure of an interface ultimately determines the behavior of devices at the nanoscale. We present a generic method to determine the possible lattice matches between two arbitrary surfaces and to calculate the strain of the corresponding matched interface. We apply this method to explore two relevant classes of interfaces for which accurate structural measurements of the interface are available: (i) the interface between pentacene crystals and the (1 1 1) surface of gold, and (ii) the interface between the semiconductor indium-arsenide and aluminum.
View Article and Find Full Text PDFA method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory.
View Article and Find Full Text PDFOur recently developed method, TranSIESTA, enables modelling of molecular electronic devices under operation conditions. The method is based on density functional theory, and calculates the self-consistent electronic structure of a nanostructure coupled to three-dimensional electrodes with different electrochemical potentials. It uses a full atomistic ab initio description of both the electrodes and the nanoscale device.
View Article and Find Full Text PDFIn this paper, we report the self-assembly, electrical characterization, and surface modification of dithiolated phenylene-ethynylene oligomer monolayers on a Au(111) surface. The self-assembly was accomplished by thiol bonding the molecules from solution to a Au(111) surface. We have confirmed the formation of self-assembled monolayers by scanning tunneling microscopy (STM) and optical ellipsometry, and have studied the kinetics of film growth.
View Article and Find Full Text PDFWe present state-of-the-art first principles calculations for the IV characteristics of a donor-insulator-acceptor (DsigmaA) type molecular diode anchored with thiolate bonds to two gold electrodes. We find very poor diode characteristics of the device, and the origin of this is analyzed in terms of the bias-dependent electronic structure. At zero bias, the highest occupied molecular orbital (HOMO) is confined to the D part, and the lowest unoccupied molecular orbital (LUMO) is confined to the A part, while at 3.
View Article and Find Full Text PDFWe report first-principles studies of electronic transport and rectification in molecular wires attached to gold electrodes. Our ab initio calculation gives an accurate description of the voltage drop as well as the broadening and alignment of the molecular levels in the metal-molecule-metal complex. We find that the operation range and rectification in such strongly chemisorbed molecules is limited by the width of the transmission resonances and their proximity to the Fermi level.
View Article and Find Full Text PDF