Herein we report the iron-catalyzed (sp)-methylation of primary alcohols using methanol as a C1 building block. This borrowing hydrogen approach employs a well-defined bench-stable (cyclopentadienone)iron(0) carbonyl complex as precatalyst (5 mol %) and enables a diverse selection of substituted 2-arylethanols to undergo (sp)-methylation in good isolated yields (24 examples, 65% average yield).
View Article and Find Full Text PDFA one-pot iron-catalyzed conversion of allylic alcohols to α-methyl ketones has been developed. This isomerization-methylation strategy utilized a (cyclopentadienone)iron(0) carbonyl complex as precatalyst and methanol as the C1 source. A diverse range of allylic alcohols undergoes isomerization-methylation to form α-methyl ketones in good isolated yields (up to 84% isolated yield).
View Article and Find Full Text PDFA general and efficient iron-catalyzed C-alkylation of oxindoles has been developed. This borrowing hydrogen approach employing a (cyclopentadienone)iron carbonyl complex (2 mol %) exhibited a broad reaction scope, allowing benzylic and simple primary and secondary aliphatic alcohols to be employed as alkylating agents. A variety of oxindoles underwent selective mono-C3-alkylation in good-to-excellent isolated yields (28 examples, 50-92 % yield, 79 % average yield).
View Article and Find Full Text PDFThe review highlights the recent advances (2013-present) in the use of earth-abundant first row transition metals in homogeneous borrowing hydrogen catalysis. The utility of catalysts based on Mn, Fe, Co, Ni and Cu to promote a diverse array of important C-C and C-N bond forming reactions is described, including discussion on reaction mechanisms, scope and limitations, and future challenges in this burgeoning area of sustainable catalysis.
View Article and Find Full Text PDFA hydrogen-transfer strategy for the catalytic functionalization of benzylic alcohols via electronic arene activation, accessing a diverse range of bespoke diaryl ethers and aryl amines in excellent isolated yields (38 examples, 70% average yield), is reported. Taking advantage of the hydrogen-transfer approach, the oxidation level of the functionalized products can be selected by judicious choice of simple and inexpensive additives.
View Article and Find Full Text PDF