Publications by authors named "Kurt Langfeld"

Wang-Landau simulations offer the possibility to integrate explicitly over a collective coordinate and stochastically over the remainder of configuration space. We propose to choose the so-called "slow mode," which is responsible for large autocorrelation times and thus critical slowing down, for collective integration. We study this proposal for the Ising model and the linear-log-relaxation (LLR) method as simulation algorithm.

View Article and Find Full Text PDF

The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) suggests a novel type of disease spread dynamics. We here study the case where infected agents recover and only develop immunity if they are continuously infected for some time . For large , the disease model is described by a statistical field theory.

View Article and Find Full Text PDF

The density of states is calculated for the SU(2), SU(3), and a compact U(1) lattice gauge theories using a modified version of the Wang-Landau algorithm. We find that the density of states of the SU(2) gauge theory can be reliably calculated over a range of 120,000 orders of magnitude for lattice sizes as big as 20(4). We demonstrate the potential of the algorithm by reproducing the SU(2) average action, its specific heat, and the critical couplings of the weak first order transition in U(1).

View Article and Find Full Text PDF

It has been well established that the removal of center vortices from SU(2) lattice configurations results in the loss of confinement. The running coupling constant, gluon form factor, and ghost form factor are studied in the Landau gauge for the full and the vortex removed theory. In the latter case, a strong suppression of the running coupling constant and the gluon form factor at low momenta is observed, and the IR singularity of the ghost form factor disappears.

View Article and Find Full Text PDF