Publications by authors named "Kurt Harris"

Alkyl isonitriles, R-NC, have previously been shown to ligate the heme (haem) iron of cytochromes P450 in both accessible oxidation states (ferrous, Fe, and ferric, Fe). Herein, the preparation of four steroid-derived isonitriles and their interactions with several P450s, including the steroidogenic CYP17A1 and CYP106A2, as well as the more promiscuous drug metabolizers CYP3A4 and CYP2D6, is described. It was found that successful ligation of the heme iron by the isonitrile functionality for a given P450 depends on both the position and stereochemistry of the isonitrile on the steroid skeleton.

View Article and Find Full Text PDF

The cytochrome P450 family 1 enzymes (CYP1s) are a diverse family of hemoprotein monooxygenases, which metabolize many xenobiotics including numerous environmental carcinogens. However, their historical function and evolution remain largely unstudied. Here we investigate CYP1 evolution via the reconstruction and characterization of the vertebrate CYP1 ancestors.

View Article and Find Full Text PDF

Mammalian cytochrome P450 enzymes often metabolize many pharmaceuticals and other xenobiotics, a feature that is valuable in a biotechnology setting. However, extant P450 enzymes are typically relatively unstable, with values of ∼30-40 °C. Reconstructed ancestral cytochrome P450 enzymes tend to have variable substrate selectivity compared with related extant forms, but they also have higher thermostability and therefore may be excellent tools for commercial biosynthesis of important intermediates, final drug molecules, or drug metabolites.

View Article and Find Full Text PDF

Cytochromes P450 are found throughout the biosphere in a wide range of environments, serving a multitude of physiological functions. The ubiquity of the P450 fold suggests that it has been co-opted by evolution many times, and likely presents a useful compromise between structural stability and conformational flexibility. The diversity of substrates metabolized and reactions catalyzed by P450s makes them attractive starting materials for use as biocatalysts of commercially useful reactions.

View Article and Find Full Text PDF