Publications by authors named "Kurt Gottmann"

Synaptotoxic Aβ oligomers are thought to play a major role in the early pathology of Alzheimer´s disease (AD). However, the molecular mechanisms involved in Aβ-induced synaptic dysfunction and synapse damage remain largely unclear. Previously, Aβ synaptotoxicity has been reported to be enhanced by increased levels of a C-terminal fragment of the synaptic adhesion molecule N-cadherin that is generated by proteolytic shedding of the extracellular domains [1].

View Article and Find Full Text PDF
Article Synopsis
  • There is a critical need for effective medications for Alzheimer's disease (AD) patients after the onset of the disease, as current treatments have not been able to reverse memory loss.
  • Previous studies suggest that lifestyle changes and physical exercise can delay symptoms, but pharmacological solutions targeting neuro-inflammation show more promise.
  • Fingolimod (FTY720), an FDA-approved drug for multiple sclerosis, has shown potential in reversing memory deficits in AD mouse models, indicating that repurposing existing drugs for AD treatment could expedite their clinical use.
View Article and Find Full Text PDF

Semantic dementia (SD) is a clinical subtype of frontotemporal dementia consistent with the neuropathological diagnosis frontotemporal lobar degeneration (FTLD) TDP type C, with characteristic round TDP-43 protein inclusions in the dentate gyrus. Despite this striking clinicopathological concordance, the pathogenic mechanisms are largely unexplained forestalling the development of targeted therapeutics. To address this, we carried out laser capture microdissection of the dentate gyrus of 15 SD patients and 17 non-demented controls, and assessed relative protein abundance changes by label-free quantitative mass spectrometry.

View Article and Find Full Text PDF

One of the most fundamental organizing principles in the mammalian brain is that neurons do not establish synapses with the other major cell type, the astrocytes. However, induced synapse formation between neurons and astrocytes appears conceivable, because astrocytes are well known to express functional ionotropic glutamate receptors. Here, we attempted to trigger synapse formation between co-cultured neurons and astrocytes by overexpressing the strongly synaptogenic adhesion protein LRRTM2 in astrocytes physically contacted by cortical axons.

View Article and Find Full Text PDF

At mammalian glutamatergic synapses, most basic elements of synaptic transmission have been shown to be modulated by specific transsynaptic adhesion complexes. However, although crucial for synapse homeostasis, a physiological regulation of synaptic vesicle endocytosis by adhesion molecules has not been firmly established. The homophilic adhesion protein N-cadherin is localized at the peri-active zone, where the highly temperature-dependent endocytosis of vesicles occurs.

View Article and Find Full Text PDF

Therapeutic approaches providing effective medication for Alzheimer's disease (AD) patients after disease onset are urgently needed. Previous studies in AD mouse models suggested that physical exercise or changed lifestyle can delay AD-related synaptic and memory dysfunctions when treatment started in juvenile animals long before onset of disease symptoms, while a pharmacological treatment that can reverse synaptic and memory deficits in AD mice was thus far not identified. Repurposing food and drug administration (FDA)-approved drugs for treatment of AD is a promising way to reduce the time to bring such medication into clinical practice.

View Article and Find Full Text PDF

Background: Spine loss is a hallmark of Alzheimer´s and other neurodegenerative diseases, and testing candidate therapeutic drugs needs quantitative analysis of dendritic spine densities. Golgi-Cox impregnation of neurons is a classical method to visualize dendritic spines in diseased brains. Importantly, at early disease stages spine loss occurs locally in the vicinity of amyloid plaques, and concomitant fluorescence labeling of amyloid plaques is required to detect local spine damage.

View Article and Find Full Text PDF

Synaptic cell adhesion molecules are well established to exhibit synaptogenic activity when overexpressed in target cells, indicating that they are involved in formation and functional maturation of synapses. The postsynaptic adhesion proteins Neuroligin1 and LRRTM2 both induce synaptic vesicle clusters in presynaptic axons by transsynaptically interacting with neurexins. In neurons, this is accompanied by the induction of glutamatergic, but not GABAergic synapses.

View Article and Find Full Text PDF

Human astrocytes differ dramatically in cell morphology and gene expression from murine astrocytes. The latter are well known to be of major importance in the formation of neuronal networks by promoting synapse maturation. However, whether human astrocyte lineage cells have a similar role in network formation has not been firmly established.

View Article and Find Full Text PDF

At synapses in the mammalian brain, continuous information transfer requires the long-term maintenance of homeostatic coupling between exo- and endocytosis of synaptic vesicles. Because classical endocytosis is orders of magnitude slower than the millisecond-range exocytosis of vesicles, high frequency vesicle fusion could potentially compromise structural stability of synapses. However, the molecular mechanisms mediating the tight coupling of exo- and endocytosis are largely unknown.

View Article and Find Full Text PDF

Despite amyloid plaques, consisting of insoluble, aggregated amyloid-β peptides, being a defining feature of Alzheimer's disease, their significance has been challenged due to controversial findings regarding the correlation of cognitive impairment in Alzheimer's disease with plaque load. The amyloid cascade hypothesis defines soluble amyloid-β oligomers, consisting of multiple amyloid-β monomers, as precursors of insoluble amyloid-β plaques. Dissecting the biological effects of single amyloid-β oligomers, for example of amyloid-β dimers, an abundant amyloid-β oligomer associated with clinical progression of Alzheimer's disease, has been difficult due to the inability to control the kinetics of amyloid-β multimerization.

View Article and Find Full Text PDF

Because of high exposure to systemic noxae, vascular endothelial cells (EC) have to ensure distinct damage defense and regenerative mechanisms to guarantee vascular health. For meaningful toxicological drug assessments employing embryonic stem cell (ESC)-based in vitro models, functional competence of differentiated progeny and detailed knowledge regarding damage defense mechanisms are essential. Here, mouse ESCs (mESC) were differentiated into functionally competent vascular cells (EC and smooth muscle cells [SMC]).

View Article and Find Full Text PDF

The 30-amino acid peptide Y-P30, generated from the N-terminus of the human dermcidin precursor protein, has been found to promote neuronal survival, cell migration and neurite outgrowth by enhancing the interaction of pleiotrophin and syndecan-3. We now show that Y-P30 activates Src kinase and extracellular signal-regulated kinase (ERK). Y-P30 promotes axonal growth of mouse embryonic stem cell-derived neurons, embryonic mouse spinal cord motoneurons, perinatal rat retinal neurons, and rat cortical neurons.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) is known to be a crucial regulator of neuronal survival and synaptic plasticity in the mammalian brain. Furthermore, BDNF positively influences differentiation of embryonic neural precursors, as well as that of neural stem cells from adult neurogenic niches. To study the impact of cell-released BDNF on neural differentiation of embryonic stem cells (ESCs), which represent an attractive source for cell transplantation studies, we have generated mouse ESC clones overexpressing BDNF-GFP by use of knock-in technology.

View Article and Find Full Text PDF

Synapse elimination and pruning of axon collaterals are crucial developmental events in the refinement of neuronal circuits. While a control of synapse formation by adhesion molecules is well established, the involvement of adhesion molecules in developmental synapse loss is poorly characterized. To investigate the consequences of mis-match expression of a homophilic synaptic adhesion molecule, we analysed an asymmetric, exclusively postsynaptic expression of N-cadherin.

View Article and Find Full Text PDF

The aetiology of Alzheimer's disease is thought to include functional impairment of synapses and synapse loss as crucial pathological events leading to cognitive dysfunction and memory loss. Oligomeric amyloid-β peptides are well known to induce functional damage, destabilization and loss of brain synapses. However, the complex molecular mechanisms of amyloid-β action resulting ultimately in synapse elimination are incompletely understood, thus limiting knowledge of potential therapeutic targets.

View Article and Find Full Text PDF

Classical cadherins are cell adhesion molecules that are thought to contribute to the control of synapse formation, synaptic transmission, and synaptic plasticity. This is largely based on studies investigating the functions of N-cadherin at glutamatergic synapses, whereas other classical cadherins have hardly been examined at central synapses. We have now used a conditional knockout approach in cultured cortical neurons to address the role of E-cadherin mainly at inhibitory, GABAergic synapses.

View Article and Find Full Text PDF

Aβ oligomers play a key role in the pathophysiology of Alzheimer's disease. Research into structure-function relationships of Aβ oligomers has been hampered by the lack of large amounts of homogeneous and stable material. Using computational chemistry, we designed conservative cysteine substitutions in Aβ aiming at accelerating and stabilizing assembly of Aβ dimers by an intermolecular disulfide bond without changing its folding.

View Article and Find Full Text PDF

Following initial contact formation, glutamatergic synapses in cortical neurons undergo pronounced functional maturation. These maturational events, occurring both pre- and postsynaptically, have been well described in the developing hippocampus. In this paper, we characterized glutamatergic synapses in immature layer Vb pyramidal neurons of the mouse somatosensory cortex during early postnatal development.

View Article and Find Full Text PDF

In the past 15 years numerous reports provided strong evidence that brain-derived neurotrophic factor (BDNF) is one of the most important modulators of glutamatergic and GABAergic synapses. Remarkable progress regarding localization, kinetics, and molecular mechanisms of BDNF secretion has been achieved, and a large number of studies provided evidence that continuous extracellular supply of BDNF is important for the proper formation and functional maturation of glutamatergic and GABAergic synapses. BDNF can play a permissive role in shaping synaptic networks, making them more susceptible for the occurrence of plastic changes.

View Article and Find Full Text PDF

Delicate control of the synaptic vesicle cycle is required to meet the demands imposed on synaptic transmission by the brain's complex information processing. In addition to intensively analyzed intrinsic regulation, extrinsic modulation of the vesicle cycle by the postsynaptic target neuron has become evident. Recent studies have demonstrated that several families of synaptic cell-adhesion molecules play a significant role in transsynaptic retrograde signaling.

View Article and Find Full Text PDF

Activity-dependent developmental maturation of the neocortical network is thought to involve the stabilization and potentiation of immature synapses. In particular, N-methyl-d-aspartate (NMDA) receptor-dependent long-term plasticity that is expressed presynaptically appears to be crucial for the selection of functionally adequate synapses. However, presynaptic expression of long-term plasticity in neocortical neurons has mainly been studied indirectly by electrophysiological techniques.

View Article and Find Full Text PDF

Synaptogenesis, the generation and maturation of functional synapses between nerve cells, is an essential step in the development of neuronal networks in the brain. It is thought to be triggered by members of the neuroligin family of postsynaptic cell adhesion proteins, which may form transsynaptic contacts with presynaptic alpha- and beta-neurexins and have been implicated in the etiology of autism. We show that deletion mutant mice lacking neuroligin expression die shortly after birth due to respiratory failure.

View Article and Find Full Text PDF

The cell adhesion molecule N-cadherin has been proposed to regulate synapse formation in mammalian central neurons. This is based on its synaptic localization enabling alignment of presynaptic and postsynaptic specializations by an adhesion mechanism. However, a potential role of N-cadherin in regulating synaptic transmission has remained elusive.

View Article and Find Full Text PDF