Publications by authors named "Kurt Geckeler"

Hybrid polypyrrole (PPy) nanoparticles were prepared using a low-temperature oxidative polymerization process in an acidic solution with polyethyleneimine (PEI) as a template and amine source. The results showed that the nanoparticles have an amorphous structure in the X-ray diffractogram and exhibited good dispersibility in water, uniform size, and a specific conductivity ranging from 0.1 to 6.

View Article and Find Full Text PDF

Halloysite is a unique biocompatible aluminosilicate clay mineral with powder particles predominantly comprising of concentrically rolled nanotubular aggregates. Some recent studies have also contributed to its prospective case in oral drug delivery and dosage forms albeit with limited commercial viability. In this study, we have investigated the use of halloysite nanotubes (HNTs) as a directly compressible multifunctional tableting excipient using SeDeM diagram expert tool.

View Article and Find Full Text PDF

A straightforward and facile method for the exfoliation of graphene sheets using poly(vinylpyrrolidone) nanoparticles of an average size of 42nm was developed and their dual role as pH-sensitive drug carrier and anti-cancer agent was evaluated. The cytotoxic impact of the exfoliated nanosheets (GRP-PVP-NP) was examined on various cells (HCT-116, HeLa, SCC-9, NIH-3T3 and HEK-293cells) by a series of assays. Their cytotoxic nature was attributed to affecting the mitochondrial enzyme activity, proliferation capability, and the formation of tight junctions in cancer cells.

View Article and Find Full Text PDF

Herein, we demonstrate a simple method to prepare graphene dispersions in an aqueous solution of DNA by the sonication of bulk graphite. The use of a commercial double-stranded DNA as a stabilizer for graphite exfoliation without any chemical modification is presented. The high energy sound waves cleave a double-stranded DNA into two single-stranded DNAs.

View Article and Find Full Text PDF

Two of the main types of nanotubular architectures are the single-walled carbon nanotubes (SWCNTs) and the self-assembling cyclic peptide nanotubes (SCPNs). We here report the preparation of the dual composite resulting from the ordered combination of both tubular motifs. In the resulting architecture, the SWCNTs can act as templates for the assembly of SCPNs that engage the carbon nanotubes noncovalently via pyrene "paddles", each member of the resulting hybrid stabilizing the other in aqueous solution.

View Article and Find Full Text PDF

Gold nanoclusters (AuNCs) have gained interest during the recent years because of their low toxicity and finer size for the bioimaging and biolabeling applications in comparison to the semiconductor quantum dot analogues. Diverse materials such as sulfur compounds, peptides, dendrimers, proteins, etc., are exploited for the preparation of AuNCs.

View Article and Find Full Text PDF

Halloysite nanotube (HNT)-based supramolecular complexes are synthesized and evaluated with respect to their cytotoxicity and effects on cellular structures. As HNTs are water-insoluble, DNA is applied for wrapping the surface of HNTs to enhance their water-dispersibility. To investigate the potential of DNA-wrapped HNTs (HD) as a promising drug delivery carrier, doxorubicin (DOX) is introduced as a model anticancer agent and loaded onto HD.

View Article and Find Full Text PDF

The main challenge of commercialization of the hydrogen economy is the lack of convenient and safe hydrogen storage materials, which can adsorb and release a significant amount of hydrogen at ambient conditions. Finding and designing suitable cost-effective materials are vital requirements to overcome the drawbacks of investigated materials. Because of its outstanding electronic, thermal, and chemical properties, the electrically conducting polyaniline (PANI) has a high potential in hydrogen storage applications.

View Article and Find Full Text PDF

A facile method for the synthesis of polyaniline-polypyrrole composite materials with network morphology is developed based on polyaniline nanofibers covered by a thin layer of polypyrrole via vapor phase polymerization. The hydrogen storage capacity of the composites is evaluated at room temperature exhibits a twofold increase in hydrogen storage capacity. The HCl-doped polyaniline nanofibers exhibit a storage capacity of 0.

View Article and Find Full Text PDF

Water-soluble, PAX-loaded carbon nanotubes are fabricated by employing a synthetic polyampholyte, PDM. To investigate the suitability of the polyampholyte and the nanotubes as drug carriers, different cellular interactions such as the human epithelial Caco-2 cells viability, their effect on the cell growth, and the change in the transepithelial electrical resistance in Caco-2 cells are studied. The resulting complex is found to exhibit an effective anti-cancer effect against colon cancer cells and an increased the reduction of the electrical resistance in the Caco-2 cells when compared to the precursor PAX.

View Article and Find Full Text PDF

The inherent size and hollow geometry with extraordinary electronic and optical properties make carbon nanotubes (CNTs) promising building blocks for molecular or nanoscale devices. Unfortunately, their hydrophobic nature and their existence in the form of agglomerated and parallel bundles make this interesting material inadequately soluble or dispersible in most of the common solvents, which is crucial to their processing. Therefore, various ingenious techniques have been reported to disperse the CNTs in various solvents with different experimental conditions.

View Article and Find Full Text PDF

The particle size and surface properties of gold nanoparticles are critical factors for the interactions between nanoparticles and cells. To produce noncytotoxic gold nanoparticles, a straightforward method for the synthesis of gold nanoparticles designed involving the reduction and stabilization by a protein such as a lysozyme in conjunction with microwave irradiation. The cooperative combination of a lysozyme with a high affinity for metal ions and the microwave irradiation allowed to form biocompatible gold nanoparticles in an aqueous system.

View Article and Find Full Text PDF

We report a facile, one-pot, shape-selective synthesis of gold nanoparticles in high yield by the reaction of an aqueous potassium tetrachloroaurate(III) solution with a commercially available detergent. We prove that a commercial detergent can act as a reducing as well as stabilizing agent for the synthesis of differently shaped gold nanoparticles in an aqueous solution at an ambient condition. It is noteworthy that the gold nanoparticles with different shapes can be prepared by simply changing the reaction conditions.

View Article and Find Full Text PDF

The cytotoxicity and cellular uptake of carbon nanotubes (CNTs) has recently attracted considerable interest because of the issue of biosphere-nanomaterial interactions. The biocompatibility of CNTs is determined by the metal impurities in the CNTs, the size of the CNTs and the CNT dispersion states; in particular, the type of surface modifications on the CNTs affects how they interact with cells and determines their cytotoxicity and cellular uptake. In this study, biocompatible single-walled carbon nanotubes (SWNTs) wrapped with a water-soluble copolymer, poly[2-(dimethylamino)ethyl methacrylate-co-methacrylic acid] (PDM), were prepared.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) constitute a novel class of nanomaterials with remarkable applications in diverse domains. However, the main intrincsic problem of CNTs is their insolubility or very poor solubility in most of the common solvents. The basic key question here is: are carbon nanotubes dissolved or dispersed in liquids, specifically in water? When analyzing the scientific research articles published in various leading journals, we found that many researchers confused between "dispersion" and "solubilization" and use the terms interchangeably, particularly when stating the interaction of CNTs with liquids.

View Article and Find Full Text PDF

The unexpected formation of supramacromolecules of β-cyclodextrin in aqueous solution under ambient conditions is reported in this article. The shape and size of the supramacromolecules could be controlled by varying the stirring time and the concentration. The supramolecular interactions of the supramacromolecules were confirmed by ¹H NMR spectroscopy.

View Article and Find Full Text PDF

A commercially available detergent was found to be an effective reducing as well as stabilizing agent for the synthesis of differently shaped gold nanoparticles in an aqueous solution at an ambient condition and the as-prepared gold nanoparticles behave as an efficient catalyst for the reduction reaction of 4-nitrophenol at room temperature.

View Article and Find Full Text PDF

A simple, green, one-pot synthesis of gold nanoparticles was achieved through the reaction of an aqueous mixture of potassium tetrachloroaurate(III) and the macrocycle cucurbit[7]uril in the presence of sodium hydroxide at room temperature without introducing any kind of traditional reducing agents and/or external energy. The as-prepared gold nanoparticles showed catalytic activity for the reduction reaction of 4-nitrophenol in the presence of NaBH(4), which has been established by visual inspection and UV/Vis spectroscopy. This report is the first for the preparation of gold nanoparticles using cucurbit[7]uril in aqueous media through chemical reduction without employing conventional reducing agents and/or external energy.

View Article and Find Full Text PDF

Silver nanoparticles made easy: A simple, effective, and one-pot method toward the synthesis of a defined macrocycle-silver nanoparticle system in water has been described (see figure). Interestingly, cucurbituril (CB)[7]-protected AgNPs showed significantly increased cytotoxicity against MCF-7 and NCI-H358 cancer cells, as demonstrated by models in vitro.

View Article and Find Full Text PDF

With the increasing interest in the biological applications of carbon nanotubes, their interactions in the biological interphase and their general cytotoxicity have become major issues. In spite of their salient properties, major hurdles still exist for their use in biological applications, due to their main characteristics, including their hydrophobic surfaces and tendency to aggregate, as well as their unknown interactions in the cellular interphase. In this Research News, these characteristics of carbon nanotubes, a model nanomaterial, are investigated.

View Article and Find Full Text PDF

Silver nanoparticles have been used for a long time and recently various methods have been additionally developed for their production. Here we report for the first time a solid-state high-speed vibration milling method for the synthesis of silver nanoparticles, in which poly(vinylpyrrolidone) is used for the reduction of the silver salt. The synthesis is performed at room temperature and no surfactant to direct the anisotropic growth of the nanoparticles is required.

View Article and Find Full Text PDF

Carbon nanotubes constitute a novel class of nanomaterials with potential applications in many areas. The attachment of metal nanoparticles to carbon nanotubes is new way to obtain novel hybrid materials with interesting properties for various applications such as catalysts and gas sensors as well as electronic and magnetic devices. Their unique properties such as excellent electronic properties, a good chemical stability, and a large surface area make carbon nanotubes very useful as a support for gold nanoparticles in many potential applications, ranging from advanced catalytic systems through very sensitive electrochemical sensors and biosensors to highly efficient fuel cells.

View Article and Find Full Text PDF

A facile and effective method for the synthesis of gold nanostructures using beta-cyclodextrin in aqueous alkaline medium is reported. The results demonstrate that leaf-like, rugged, dendritic, and tadpole-shaped gold nanostructures are obtained with high yield for the first time under the same experimental conditions by using four different surfactants. To study the effect of surfactant on the shape of the nanoparticles, the experiments were also carried out in the absence of surfactant and in the presence of poly(1-vinyl-2-pyrrolidone).

View Article and Find Full Text PDF