Publications by authors named "Kurt Evans"

Background: Datopotamab deruxtecan (Dato-DXd), is a humanized anti-TROP2 IgG1 monoclonal antibody linked to a potent topoisomerase I inhibitor payload (DXd). Dato-DXd has already shown antitumor activity in breast cancer; however, the determinants of response, including the importance of TROP2 expression, remain unclear. We tested the activity of Dato-DXd in a panel of breast cancer patient-derived xenografts (BCXs) varying in TROP2 expression.

View Article and Find Full Text PDF

Purpose: Biliary tract cancers (BTCs), which are rare and aggressive malignancies, are rich in clinically actionable molecular alterations. A major challenge in the field is the paucity of clinically relevant BTC models which recapitulate the diverse molecular profiles of these tumors. The purpose of this study was to curate a collection of patient-derived xenograft (PDX) models that reflect the spectrum of genomic alterations present in BTCs to create a resource for modeling precision oncology.

View Article and Find Full Text PDF

Patient-derived xenografts (PDX) model human intra- and intertumoral heterogeneity in the context of the intact tissue of immunocompromised mice. Histologic imaging via hematoxylin and eosin (H&E) staining is routinely performed on PDX samples, which could be harnessed for computational analysis. Prior studies of large clinical H&E image repositories have shown that deep learning analysis can identify intercellular and morphologic signals correlated with disease phenotype and therapeutic response.

View Article and Find Full Text PDF

The Wnt receptor ROR1 has generated increased interest as a cancer therapeutic target. Research on several therapeutic approaches involving this receptor is ongoing; however, ROR1 tissue expression remains understudied. We performed an immunohistochemistry analysis of ROR1 protein expression in a large cohort of multiple tumor and histologic types.

View Article and Find Full Text PDF

Although patient-derived xenografts (PDX) are commonly used for preclinical modeling in cancer research, a standard approach to in vivo tumor growth analysis and assessment of antitumor activity is lacking, complicating the comparison of different studies and determination of whether a PDX experiment has produced evidence needed to consider a new therapy promising. We present consensus recommendations for assessment of PDX growth and antitumor activity, providing public access to a suite of tools for in vivo growth analyses. We expect that harmonizing PDX study design and analysis and assessing a suite of analytical tools will enhance information exchange and facilitate identification of promising novel therapies and biomarkers for guiding cancer therapy.

View Article and Find Full Text PDF

Unlabelled: Zanidatamab is a bispecific human epidermal growth factor receptor 2 (HER2)-targeted antibody that has demonstrated antitumor activity in a broad range of HER2-amplified/expressing solid tumors. We determined the antitumor activity of zanidatamab in patient-derived xenograft (PDX) models developed from pretreatment or postprogression biopsies on the first-in-human zanidatamab phase I study (NCT02892123). Of 36 tumors implanted, 19 PDX models were established (52.

View Article and Find Full Text PDF

Several alterations in fibroblast growth factor receptor (FGFR) genes have been found in breast cancer; however, they have not been well characterized as therapeutic targets. Futibatinib (TAS-120; Taiho) is a novel, selective, pan-FGFR inhibitor that inhibits FGFR1-4 at nanomolar concentrations. We sought to determine futibatinib's efficacy in breast cancer models.

View Article and Find Full Text PDF

Background & Aims: There is a knowledge gap in understanding mechanisms of resistance to fibroblast growth factor receptor (FGFR) inhibitors (FGFRi) and a need for novel therapeutic strategies to overcome it. We investigated mechanisms of acquired resistance to FGFRi in patients with FGFR2-fusion-positive cholangiocarcinoma (CCA).

Methods: A retrospective analysis of patients who received FGFRi therapy and underwent tumor and/or cell-free DNA analysis, before and after treatment, was performed.

View Article and Find Full Text PDF

TROP2 antibody drug conjugates (ADCs) are under active development. We seek to determine whether we can enhance activity of TROP2 ADCs by increasing TROP2 expression. In metaplastic breast cancers (MpBC), there is limited expression of TROP2, and downregulating transcription factor ZEB1 upregulates E-cad and TROP2, thus sensitizing cancers to TROP2 ADC sacituzumab govitecan (SG).

View Article and Find Full Text PDF

Purpose: Cyclin E (CCNE1) has been proposed as a biomarker of sensitivity to adavosertib, a Wee1 kinase inhibitor, and a mechanism of resistance to HER2-targeted therapy.

Experimental Design: Copy number and genomic sequencing data from The Cancer Genome Atlas and MD Anderson Cancer Center databases were analyzed to assess ERBB2 and CCNE1 expression. Molecular characteristics of tumors and patient-derived xenografts (PDX) were assessed by next-generation sequencing, whole-exome sequencing, fluorescent in situ hybridization, and IHC.

View Article and Find Full Text PDF

Most tumors with activating MAPK (mitogen-activated protein kinase) pathway alterations respond poorly to MEK inhibitors alone. Here, we evaluated combination therapy with MEK inhibitor selumetinib and MDM2 inhibitor KRT-232 in TP53 wild-type and MAPK altered colon and thyroid cancer models. In vitro, we showed synergy between selumetinib and KRT-232 on cell proliferation and colony formation assays.

View Article and Find Full Text PDF

-activating mutations are the most frequent driver mutations in papillary thyroid cancer (PTC). Targeted inhibitors such as dabrafenib have been used in advanced -mutated PTC; however, acquired resistance to the drug is common and little is known about other effectors that may play integral roles in this resistance. In addition, the induction of PTC dedifferentiation into highly aggressive -driven anaplastic thyroid cancer (ATC) has been reported.

View Article and Find Full Text PDF

Oxidative phosphorylation (OXPHOS) is an active metabolic pathway in many cancers. RNA from pretreatment biopsies from patients with triple-negative breast cancer (TNBC) who received neoadjuvant chemotherapy demonstrated that the top canonical pathway associated with worse outcome was higher expression of OXPHOS signature. IACS-10759, a novel inhibitor of OXPHOS, stabilized growth in multiple TNBC patient-derived xenografts (PDX).

View Article and Find Full Text PDF

Molecular alterations in the PI3K/AKT pathway occur frequently in hormone receptor-positive breast tumors. Patients with ER-positive, HER2-negative metastatic breast cancer are often treated with CDK4/6 inhibitors such as palbociclib in combination with endocrine therapy. Although this is an effective regimen, most patients ultimately progress.

View Article and Find Full Text PDF

Background: MDM2/MDMX proteins are frequently elevated in hormone receptor-positive (ER+) breast cancer. We sought to determine the antitumor efficacy of the combination of ALRN-6924, a dual inhibitor of MDM2/MDMX, with chemotherapy in ER+ breast cancer models.

Methods: Three hundred two cell lines representing multiple tumor types were screened to confirm the role of TP53 status in ALRN-6924 efficacy.

View Article and Find Full Text PDF

Purpose: Neratinib is an irreversible, pan-HER tyrosine kinase inhibitor that is FDA approved for HER2-overexpressing/amplified (HER2) breast cancer. In this preclinical study, we explored the efficacy of neratinib in combination with inhibitors of downstream signaling in HER2 cancers and .

Experimental Design: Cell viability, colony formation assays, and Western blotting were used to determine the effect of neratinib .

View Article and Find Full Text PDF

PTEN-deficient tumors are dependent on PI3Kβ activity, making PI3Kβ a compelling target. We evaluated the efficacy of PI3Kβ inhibitor AZD8186 on tumors with PTEN loss. cell viability assay and immunoblotting demonstrated that PTEN loss was significantly correlated with AZD8186 sensitivity in triple negative breast cancer (TNBC) cell lines.

View Article and Find Full Text PDF

Phosphatase and tensin homologue deleted from chromosome 10 (PTEN) negatively regulates the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway. Triple negative breast cancers (TNBC) are often PTEN-deficient, making mTOR a compelling target. We evaluated the efficacy of catalytic mTOR inhibitor TAK228 alone and in combination with eribulin in TNBC.

View Article and Find Full Text PDF

How tumor cells genetically lose antigenicity and evade immune checkpoints remains largely elusive. We report that tissue-specific expression of the human long noncoding RNA LINK-A in mouse mammary glands initiates metastatic mammary gland tumors, which phenotypically resemble human triple-negative breast cancer (TNBC). LINK-A expression facilitated crosstalk between phosphatidylinositol-(3,4,5)-trisphosphate and inhibitory G-protein-coupled receptor (GPCR) pathways, attenuating protein kinase A-mediated phosphorylation of the E3 ubiquitin ligase TRIM71.

View Article and Find Full Text PDF

Purpose: Poor prognosis in triple-negative breast cancer (TNBC) is due to an aggressive phenotype and lack of biomarker-driven targeted therapies. Overexpression of cyclin E and phosphorylated-CDK2 are correlated with poor survival in patients with TNBC, and the absence of CDK2 desensitizes cells to inhibition of Wee1 kinase, a key cell-cycle regulator. We hypothesize that cyclin E expression can predict response to therapies, which include the Wee1 kinase inhibitor, AZD1775.

View Article and Find Full Text PDF

Inflammatory breast cancer (IBC) is a rare and aggressive presentation of invasive breast cancer with a 62% to 68% 5-year survival rate. It is the most lethal form of breast cancer, and early recognition and treatment is important for patient survival. Like non-inflammatory breast cancer, IBC comprises multiple subtypes, with the triple-negative subtype being overrepresented.

View Article and Find Full Text PDF

Breast cancer patients who do not respond to neoadjuvant therapy have a poor prognosis. There is a pressing need for novel targets and models for preclinical testing. Here we report characterization of breast cancer patient-derived xenografts (PDX) largely generated from residual tumors following neoadjuvant chemotherapy.

View Article and Find Full Text PDF

Background: Selinexor (KPT-330) is an oral agent that has been shown to inhibit the nuclear exporter XPO1. Given the pressing need for novel therapies for triple-negative breast cancer (TNBC), we sought to determine the antitumor effects of selinexor in vitro and in vivo.

Methods: Twenty-six breast cancer cell lines of different breast cancer subtypes were treated with selinexor in vitro.

View Article and Find Full Text PDF

Angiogenesis and co-optive vascular remodeling are prerequisites of solid tumor growth. Vascular heterogeneity, notably perivascular composition, may play a critical role in determining the rate of cancer progression. The contribution of vascular pericyte heterogeneity to cancer progression and therapy response is unknown.

View Article and Find Full Text PDF