Glycogen synthase kinase-3beta (GSK-3beta) is a key target and effector of downstream insulin signalling. Using comparative protein kinase assays and molecular docking studies we characterize the emodin-derivative 4-[N-2-(aminoethyl)-amino]-emodin (L4) as a sensitive and potent inhibitor of GSK-3beta with peculiar features. Compound L4 shows a low cytotoxic potential compared to other GSK-3beta inhibitors determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay and cellular ATP levels.
View Article and Find Full Text PDFTrans-beta-nitrostyrene (TBNS) has been reported to be a potent inhibitor of protein phosphatases PTB1 and PP2A and to display a pro-apoptotic effect even in multidrug resistant tumour cells. Here we compared the anti-tumour potential of TBNS with 5-fluorouracil (5-FU) as the standard chemotherapeutic agent for colorectal cancer in LoVo cells. Resistance to 5-FU based therapy might be a consequence of 5-FU's delayed effect requiring long-term effective concentrations in the tumour tissue.
View Article and Find Full Text PDFDrugs containing an anthraquinone moiety such as daunorubicin (Daunoblastin) and mitoxantrone (Onkotrone) constitute some of the most powerful cytostatics. They suppress tumor growth mainly by intercalation into DNA and inhibition of topoisomerase II, and are suspected to generate free radicals leading to DNA strand scission. We established a novel strategy for obtaining new highly functionalized derivatives of emodin (1,3,8-trihydroxy-6-methyl-anthraquinone).
View Article and Find Full Text PDFPurpose: Thalidomide has demonstrated clinical activity in various malignancies including androgen-independent prostate cancer. The development of novel thalidomide analogs with better activity/toxicity profiles is an ongoing research effort. Our laboratory previously reported the in vitro antiangiogenic activity of the N-substituted thalidomide analog CPS11 and the tetrafluorinated analogs CPS45 and CPS49.
View Article and Find Full Text PDFThalidomide, 2-(2,6-dioxo-3-piperidinyl)-1H-isoindole-1,3(2H)-dione, has been shown to inhibit angiogenesis, the formation of new blood vessels from existing vasculature. As a result, there is renewed interest in this drug as a potential therapy for solid tumors. Thalidomide forms a number of metabolites and has been shown to require metabolic activation for antiangiogenic activity.
View Article and Find Full Text PDFInhibition of angiogenesis is currently perceived as one of the promising strategies in the treatment of cancer. The antiangiogenic property of thalidomide has inspired a second wave of research on this teratogenic drug. Previous studies from our group and others demonstrated that metabolites of thalidomide are responsible for the drug's pharmacological actions.
View Article and Find Full Text PDFIn the present study, we outlined the part of the molecule mediating the prominent pro-apoptotic effect of the Michael adduct of ascorbic acid with p-chloro-nitrostyrene, a new synthetic phosphatase inhibitor. The nitrostyrene (NS) moiety was identified as the structure essential for apoptosis induction. NS and its ascorbic acid adducts displayed LC(50) values of 10-25 microM with no significant reduction of potency in okadaic acid resistant cells overexpressing the MDR1 P-glycoprotein.
View Article and Find Full Text PDFThalidomide has been shown to reduce the production of tumor necrosis factor-alpha (TNF-alpha), a cytokine with deleterious pathophysiologic effects in various diseases. In search of thalidomide analogues with improved TNF-alpha inhibiting properties, 5-ethyl-1-phenyl-5-(3,4,5,6-tetrafluorophthalimido)barbituric acid (TFBA) was found to be superior to thalidomide. Besides TNF-alpha, TFBA also suppressed interleukin-6 and interleukin-10 production of isolated monocytes.
View Article and Find Full Text PDFThe effects of Michael adducts of 6-O-palmitoyl-L-ascorbic acid (compounds 1-4) on the phosphorylation-dependent response of stimulated monocytes and neutrophils was investigated. The pyranosyl derivative 3 increased the production of tumor necrosis factor-alpha in human monocytes stimulated with lipopolysaccharide (LPS). Compound 3 also enhanced the release of tumor necrosis factor-alpha from nonstimulated monocytes.
View Article and Find Full Text PDF