Disordered crystalline materials are used in a wide variety of energy-related technologies. Recent results from neutron total scattering experiments have shown that the atomic arrangements of many disordered crystalline materials are not random nor are they represented by the long-range structure observed from diffraction experiments. Despite the importance of disordered materials and the impact of disorder on the expression of physical properties, the underlying fundamental atomic-scale rules of disordering are not currently well understood.
View Article and Find Full Text PDFFormation of metastable phases in Zr-ion-irradiated corundum alumina (Al2O3) upon thermal annealing was examined using transmission electron microscopy. A metastable cubic spinel phase was formed in the topmost layer of the as-irradiated microstructure. During thermal annealing at temperatures ranging from 1073 to 1273 K, this spinel layer grew in extent via an unusual corundum-to-spinel phase transformation.
View Article and Find Full Text PDFUnderstanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore.
View Article and Find Full Text PDFIn order to close the nuclear fuel cycle, advanced concepts for separating out fission products are necessary. One approach is to use a dispersion fuel form in which a fissile core is surrounded by an inert matrix that captures and immobilizes the fission products from the core. If this inert matrix can be easily separated from the fuel, via e.
View Article and Find Full Text PDFCeramics destined for use in hostile environments such as nuclear reactors or waste immobilization must be highly durable and especially resistant to radiation damage effects. In particular, they must not be prone to amorphization or swelling. Few ceramics meet these criteria and much work has been devoted in recent years to identifying radiation-tolerant ceramics and the characteristics that promote radiation tolerance.
View Article and Find Full Text PDFWe have examined amorphous structures of silicon carbide (SiC) using both transmission electron microscopy and a molecular-dynamics approach. Radial distribution functions revealed that amorphous SiC contains not only heteronuclear (Si-C) bonds but also homonuclear (Si-Si and C-C) bonds. The ratio of heteronuclear to homonuclear bonds was found to change upon annealing, suggesting that structural relaxation of the amorphous SiC occurred.
View Article and Find Full Text PDF