Neurogastroenterol Motil
July 2020
Background: Gastrointestinal (GI) dysfunction is observed clinically after spinal cord injury (SCI) and contributes to the diminished long-term quality of life. Our study examined the acute and chronic GI vascular changes that occur following SCI. We demonstrated that the GI vascular tract in SCI mice becomes compromised during the acute phase of injury and persists into the chronic phase of injury.
View Article and Find Full Text PDFIntegrin β1 receptor, expressed on the surface of tumor cells and macrophages in the tumor microenvironment (TME), has been implicated in both tumor progression and resistance to multiple modalities of therapy. OS2966 is the first clinical-ready humanized monoclonal antibody to block integrin β1 and was recently orphan designated by the FDA Office of Orphan Products Development. Here, we tested therapeutic potential of OS2966-mediated integrin β1 blockade to enhance the efficacy of oncolytic herpes simplex virus-1 (oHSV) through evaluation of virus replication, tumor cell killing efficiency, effect on the antiviral signaling pathway, co-culture assays of oHSV-infected cells with macrophages, and bioluminescence imaging on mammary fat pad triple-negative breast cancer xenograft and subcutaneous and intracranial glioma xenografts.
View Article and Find Full Text PDFHMGB1 is a ubiquitously expressed intracellular protein that binds DNA and transcription factors and regulates chromosomal structure and function. Under conditions of cell death or stress, it is actively or passively released by cells into the extracellular environment, where it functions as damage-associated molecular pattern (DAMP) that orchestrates pro-inflammatory cytokine release and inflammation. Our results demonstrate that HMGB1 is secreted in the tumor microenvironment after oncolytic HSV (oHSV) infection and .
View Article and Find Full Text PDFOur understanding of mild traumatic brain injury (mTBI) is still in its infancy and to gain a greater understanding, relevant animal models should replicate many of the features seen in human mTBI. These include changes to diffusion tensor imaging (DTI) parameters, absence of anatomical lesions on conventional neuroimaging, and neurobehavioral deficits. The Maryland closed head TBI model causes anterior-posterior plus sagittal rotational acceleration of the brain, frequently observed with motor vehicle and sports-related TBI injuries.
View Article and Find Full Text PDFThe effect of chronic cocaine exposure on multiple white matter structures in rodent brain was examined using diffusion tensor imaging (DTI), locomotor behavior, and end point histology. The animals received either cocaine at a dose of 100mg/kg (N=19), or saline (N=17) for 28 days through an implanted osmotic minipump. The animals underwent serial DTI scans, locomotor assessment, and end point histology for determining the expressions of myelin basic protein (MBP), neurofilament-heavy protein (NF-H), proteolipid protein (PLP), Nogo-A, aquaporin-4 (AQP-4), and growth associated protein-43 (GAP-43).
View Article and Find Full Text PDFBackground: Ultrasound (U/S) and MRI measurements of the optic nerve sheath diameter (ONSD) have been proposed as intracranial pressure measurement surrogates, but these methods have not been fully evaluated or standardized. The purpose of this study was to develop an ex-vivo model for evaluating ONSD measurement techniques by comparing U/S and MRI measurements to physical measurements.
Methods: The left eye of post mortem juvenile pigs (N = 3) was excised and the subdural space of the optic nerve cannulated.
The majority of people who sustain a traumatic brain injury (TBI) have an injury that can be classified as mild (often referred to as concussion). Although head CT scans for most subjects who have sustained a mild TBI (mTBI) are negative, these persons may still suffer from neurocognitive and neurobehavioral deficits. In order to expedite pre-clinical research and develop therapies, there is a need for well-characterized animal models of mTBI that reflect the neurological, neurocognitive, and pathological changes seen in human patients.
View Article and Find Full Text PDFThere is considerable interest in determining lens volume in the living eye. Lens volume is of interest to understand accommodative changes in the lens and to size accommodative IOLs (A-IOLs) to fit the capsular bag. Some studies have suggested lens volume change during accommodation.
View Article and Find Full Text PDFPurpose: To characterize the influence of optical defocus on ocular shape and the pattern of peripheral refraction in infant rhesus monkeys.
Methods: Starting at 3 weeks of age, eight infant monkeys were reared wearing -3 diopter (D) spectacle lenses over one eye that produced relative hyperopic defocus in the nasal field (NF) but allowed unrestricted vision in the temporal field (NF group). Six infants were reared with monocular -3 D lenses that produced relative hyperopic defocus across the entire field of view.
Purpose: To determine whether refractive development in primates is mediated by local retinal mechanisms, the authors examined the effects of hemiretinal form deprivation on ocular growth and the pattern of peripheral refractions in rhesus monkeys.
Methods: Beginning at approximately 3 weeks of age, nine infant monkeys were reared wearing monocular diffuser lenses that eliminated form vision in the nasal field (nasal field diffuser [NFD]). Control data were obtained from the nontreated fellow eyes, 24 normal monkeys, and 19 monkeys treated with full-field diffusers.
Purpose: To determine whether visual experience can alter ocular shape and peripheral refractive error pattern, the authors investigated the effects of form deprivation on refractive development in infant rhesus monkeys.
Methods: Monocular form deprivation was imposed in 10 rhesus monkeys by securing diffuser lenses in front of their treated eyes between 22 +/- 2 and 163 +/- 17 days of age. Each eye's refractive status was measured longitudinally by retinoscopy along the pupillary axis and at 15 degrees intervals along the horizontal meridian to eccentricities of 45 degrees .
Perinatal hypoxia-ischemia (HI) occurs in 0.2%-0.4% of all live births, with 100% O(2) resuscitation (HHI) remaining a standard clinical treatment.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) studies were performed for visualizing ongoing brain plasticity in Neurotrophin-3 (NT3)-treated experimental spinal cord injury (SCI). In response to the electrical stimulation of the forepaw, the NT3-treated animals showed extensive activation of brain structures that included contralateral cortex, thalamus, caudate putamen, hippocampus, and periaqueductal gray. Quantitative analysis of the fMRI data indicated significant changes both in the volume and center of activations in NT3-treated animals relative to saline-treated controls.
View Article and Find Full Text PDFFunctional MRI (fMRI) on spinal cord-injured rodents at 4 and 8 weeks post injury (PI) is described. The paradigm for fMRI, based on electrical stimulation of rat paws, was automated using an in-house designed microprocessor-based controller that was interfaced to a stimulator. The MR images were spatially normalized to the Paxinos and Watson atlas using publicly available digital images of the cryosections.
View Article and Find Full Text PDFCortical spreading depression (CSD) was induced by transient (10 min) applications of KCl in agar upon the cortical surface of alpha-chloralose anaesthetised cats. Its features were compared with CSD resulting from sustained applications of crystalline KCl through a mapping of the apparent diffusion coefficient (ADC) using diffusion-weighted echo planar imaging (DWI) over a poststimulus period of 60-100 min. Individual CSD events were computationally detected with the aid of Savitzky-Golay smoothing applied to critically sampled data derived from regions of interest (ROIs) made up of 2 x 2 pixel matrices.
View Article and Find Full Text PDF