Publications by authors named "Kurt A Wong"

The pleiotropic cytokine IL-6 plays an integral role not only in innate inflammatory responses but also in the activation and differentiation of lymphocyte subsets. In this study, by using a conditional knockout (cKO) model with selective IL-6 receptor deletion in T cells (IL-6R-cKO), we demonstrated that T cell-specific IL-6R signaling is essential for viral control during persistent lymphocytic choriomeningitis virus clone 13 infection. Strikingly, we observed that in contrast to previous studies with ubiquitous IL-6 deletion or blockade, specific IL-6R deletion in T cells did not affect T follicular helper (Tfh) cell accumulation unless IL-6R-deficient T cells were competing with wild-type cells in mixed bone marrow chimeras.

View Article and Find Full Text PDF

The role of IL-27 in antiviral immunity is still incompletely understood, especially in the context of chronic viruses that induce a unique environment in their infected host. Cytomegalovirus (CMV) establishes a persistent, tissue localized infection followed by lifelong latency. CMV infects the majority of people and although asymptomatic in healthy individuals, can cause serious disease or death in those with naïve or compromised immune systems.

View Article and Find Full Text PDF

Chronic viral infections represent a major challenge to the host immune response, and a unique network of immunological elements, including cytokines, are required for their containment. By using a model persistent infection with the natural murine pathogen lymphocytic choriomeningitis virus clone 13 (LCMV Cl13) we investigated the role of one such cytokine, interleukin-27 (IL-27), in the control of chronic infection. We found that IL-27 receptor (IL-27R) signaling promoted control of LCMV Cl13 as early as days 1 and 5 after infection and that transcripts were rapidly elevated in multiple subsets of dendritic cells (DCs) and myeloid cells.

View Article and Find Full Text PDF

The IL-6 cytokine family utilizes the common signal transduction molecule gp130, which can mediate a diverse range of outcomes. To clarify the role of gp130 signaling in vivo during acute viral infection, we infected Cd4-cre Il6st(fl/fl) mice, in which gp130 is conditionally ablated in T cells, with acute lymphocytic choriomeningitis virus. We found that by day 12, but not at day 8, after infection the number of virus-specific CD4(+) T cells was reduced in the absence of gp130, and this was sustained for up to 2 mo postinfection.

View Article and Find Full Text PDF

Background: Human populations that are naturally subjected to Plasmodium infection do not acquire complete protection against the liver stage of this parasite despite prolonged and frequent exposure. However, sterile immunity against Plasmodium liver stage can be achieved after repeated exposure to radiation attenuated sporozoites. The reasons for this different response remain largely unknown, but a suppressive effect of blood stage Plasmodium infection has been proposed as a cause for the lack of liver stage protection.

View Article and Find Full Text PDF

B lymphocytes differentiate into antibody-secreting cells under the antigen-specific control of follicular helper T cells (T(FH) cells). Here we demonstrate that isotype-switched plasma cells expressed major histocompatibility complex (MHC) class II, the costimulatory molecules CD80 and CD86, and the intracellular machinery required for antigen presentation. Antigen-specific plasma cells accessed, processed and presented sufficient antigen in vivo to induce multiple helper T cell functions.

View Article and Find Full Text PDF

Background: Infection with the protozoan parasite Plasmodium is the cause of malaria. Plasmodium infects host erythrocytes causing the pathology of the disease. Plasmodium-infected erythrocytes can modulate the maturation of dendritic cells (DCs) and alter their capacity to activate T cells.

View Article and Find Full Text PDF

Vaccination with Plasmodium sporozoites attenuated by irradiation or genetic manipulation induces a protective immune response in rodent malaria models. Recently, vaccination with chemically attenuated P. berghei sporozoites (CAS) has also been shown to elicit sterile immunity in mice.

View Article and Find Full Text PDF

Background: During infection, dendritic cells (DCs) encounter pathogenic microorganisms that can modulate their function and shape the T cell responses generated. During the process of T cell activation, DCs establish strong, long-lasting interactions with naïve T cells.

Methods: Using a mouse malaria model, the interactions of DCs and naïve CD4+ T cells have been analysed.

View Article and Find Full Text PDF

During an acute Plasmodium infection, uncontrolled proinflammatory responses can cause morbidity and mortality. Regulation of this response is required to prevent immunopathology. We therefore decided to investigate a recently characterized subset of regulatory dendritic cells (DCs) that expresses low levels of CD11c and high levels of CD45RB.

View Article and Find Full Text PDF

During an acute blood-stage malaria infection, T cell responses to malaria and other bystander antigens are inhibited. Plasmodium infection induces strong cytokine responses that facilitate parasite clearance but may interfere with T cell functions, as some of the soluble immune mediators induced are also general inhibitors of T cell responses. Using a malaria mouse model, we have analyzed the cytokines produced by dendritic cells in response to P.

View Article and Find Full Text PDF