The stability and activity of tumor suppressor p53 are tightly regulated and partially depend on the p53 proline-rich domain (PRD). We recently analyzed mice expressing p53 with a deletion of the PRD (p53(DeltaP)). p53(DeltaP), a weak transactivator hypersensitive to Mdm2-mediated degradation, is unable to suppress oncogene-induced tumors.
View Article and Find Full Text PDFThe mechanisms by which Mdm2 and Mdm4 (MdmX) regulate p53 remain controversial. We generated a mouse encoding p53 lacking the proline-rich domain (p53DeltaP). p53DeltaP exhibited increased sensitivity to Mdm2-dependent degradation and decreased transactivation capacity, correlating with deficient cell cycle arrest and reduced apoptotic responses.
View Article and Find Full Text PDFP53 is an unstable transcription factor that is mutated in a majority of human cancers. With a significant role in initiating cell elimination programs, a network has evolved to fine-tune P53 transcriptional output and prevent errant activation. Modifications of the C terminus have long been viewed as critical binary determinants of P53 stability or activation.
View Article and Find Full Text PDFRecently, several common fragile sites (CFSs) have been cloned and characterized, including the two most frequently observed in the human population, FRA3B and FRA16D. In addition to their high frequency of breakage, FRA3B and FRA16D colocalize with genes crossing large regions of breakage. At FRA3B, the fragile histidine triad (FHIT) gene spans more than 1 Mb, and at FRA16D, the WWOX gene spans more than 750 kb.
View Article and Find Full Text PDF