Publications by authors named "Kurt A Fegely"

The objective of this study was to investigate the influence of talc and humidity conditions during storage on the crystal growth of guaifenesin on the surface of melt-extruded matrix tablets. Tablets consisted of the model drug guaifenesin in a matrix of either Acryl-EZE(R) or Eudragit(R) L10055 and either no talc, 25% or 50% talc. After processing, the hot-melt-extruded matrix tablets were supersaturated with amorphous guaifenesin, which resulted in the development of guaifenesin drug crystals on exposed surfaces of the tablet during storage (all tablets were stored at 24 degrees C).

View Article and Find Full Text PDF

Objectives: This study investigated the effect of aqueous film coating on the recrystallization of guaifenesin from acrylic, hot-melt extruded matrix tablets.

Methods: After hot-melt extrusion, matrix tablets were film-coated with either hypromellose or ethylcellulose. The effects of the coating polymer, curing and storage conditions, polymer weight gain, and core guaifenesin concentration on guaifenesin recrystallization were investigated.

View Article and Find Full Text PDF

Hypromellose (hydroxypropyl methylcellulose, HPMC) matrices are widely used in the formulation of sustained release dosage forms. The integrity and performance of an HPMC matrix formulation depends on rapid hydration and gel formation upon ingestion. Due to the recent alert issued by the Food and Drug Administration regarding the potential negative influence of alcoholic beverages on extended release (ER) formulations, several researchers have evaluated the potential influence of hydroalcoholic media on drug release from ER dosage forms.

View Article and Find Full Text PDF

The purpose of the study was to investigate the physical state of hot-melt extruded guaifenesin tablets containing either Acryl-EZE or Eudragit L100-55 and to study the physicochemical factors influencing crystal growth of guaifenesin on the surface of the extrudates. The powder mixtures containing Acryl-EZE were extruded on a single-screw Randcastle Microtruder at 20rpm and at temperatures of 90, 95, 110 degrees C (zones 1, 2, 3, respectively) and 115 degrees C (die), before being manually cut into tablets (250+/-5mg). Extrudates containing Eudragit L100-55, TEC and guaifenesin were extruded at temperatures ranging from 60 to 115 degrees C.

View Article and Find Full Text PDF

The purpose of the current study was to investigate the physicochemical properties of melt-extruded dosage forms based on Acryl-EZE and to determine the influence of gelling agents on the mechanisms and kinetics of drug release from thermally processed matrices. Acryl-EZE is a pre-mixed excipient blend based on a methacrylic acid copolymer that is optimized for film-coating applications. Powder blends containing theophylline, Acryl-EZE, triethyl citrate and an optional gelling agent, Methocel K4M Premium (hydroxypropyl methylcellulose, HPMC, hypromellose 2208) or Carbopol 974P (carbomer), were thermally processed using a Randcastle single-screw extruder.

View Article and Find Full Text PDF