Excessive insulin secretion independent of insulin resistance, defined as primary hypersecretion, is associated with obesity and an unfavorable metabolic phenotype. We examined the characteristics of adipose tissue of youth with primary insulin hypersecretion and the longitudinal metabolic alterations influenced by the complex adipo-insular interplay. In a multiethnic cohort of adolescents with obesity but without diabetes, primary insulin hypersecretors had enhanced model-derived β-cell glucose sensitivity and rate sensitivity but worse glucose tolerance, despite similar demographics, adiposity, and insulin resistance measured by both oral glucose tolerance test and euglycemic-hyperinsulinemic clamp.
View Article and Find Full Text PDFThe Diversity Outbred (DO) mice and their inbred founders are widely used models of human disease. However, although the genetic diversity of these mice has been well documented, their epigenetic diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation, are important regulators of gene expression and, as such, are a critical mechanistic link between genotype and phenotype.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) have linked single nucleotide polymorphisms (SNPs) at >250 loci in the human genome to type 2 diabetes (T2D) risk. For each locus, identifying the functional variant(s) among multiple SNPs in high linkage disequilibrium is critical to understand molecular mechanisms underlying T2D genetic risk. Using massively parallel reporter assays (MPRA), we test the cis-regulatory effects of SNPs associated with T2D and altered in vivo islet chromatin accessibility in MIN6 β cells under steady state and pathophysiologic endoplasmic reticulum (ER) stress conditions.
View Article and Find Full Text PDFDetecting multiplets in single nucleus (sn)ATAC-seq data is challenging due to data sparsity and limited dynamic range. AMULET (ATAC-seq MULtiplet Estimation Tool) enumerates regions with greater than two uniquely aligned reads across the genome to effectively detect multiplets. We evaluate the method by generating snATAC-seq data in the human blood and pancreatic islet samples.
View Article and Find Full Text PDFβ cells may participate and contribute to their own demise during Type 1 diabetes (T1D). Here we report a role of their expression of Tet2 in regulating immune killing. Tet2 is induced in murine and human β cells with inflammation but its expression is reduced in surviving β cells.
View Article and Find Full Text PDFPatterns of abdominal fat distribution (for example, a high vs. low visceral adipose tissue [VAT]/[VAT + subcutaneous adipose tissue (SAT)] ratio), independent of obesity, during adolescence carry a high risk for insulin resistance and type 2 diabetes. Longitudinal follow-up of a cohort of obese adolescents has recently revealed that a high ratio (high VAT/[VAT + SAT]) is a major determinant of fatty liver and metabolic impairment over time, with these effects being more pronounced in girls than in boys.
View Article and Find Full Text PDFEndoC-βH1 is emerging as a critical human β cell model to study the genetic and environmental etiologies of β cell (dys)function and diabetes. Comprehensive knowledge of its molecular landscape is lacking, yet required, for effective use of this model. Here, we report chromosomal (spectral karyotyping), genetic (genotyping), epigenomic (ChIP-seq and ATAC-seq), chromatin interaction (Hi-C and Pol2 ChIA-PET), and transcriptomic (RNA-seq and miRNA-seq) maps of EndoC-βH1.
View Article and Find Full Text PDFType 2 diabetes (T2D) is a complex disorder in which both genetic and environmental risk factors contribute to islet dysfunction and failure. Genome-wide association studies (GWAS) have linked single nucleotide polymorphisms (SNPs), most of which are noncoding, in >200 loci to islet dysfunction and T2D. Identification of the putative causal variants and their target genes and whether they lead to gain or loss of function remains challenging.
View Article and Find Full Text PDFGenome-wide association studies (GWASs) and functional genomics approaches implicate enhancer disruption in islet dysfunction and type 2 diabetes (T2D) risk. We applied genetic fine-mapping and functional (epi)genomic approaches to a T2D- and proinsulin-associated 15q22.2 locus to identify a most likely causal variant, determine its direction of effect, and elucidate plausible target genes.
View Article and Find Full Text PDFHorm Mol Biol Clin Investig
March 2018
Obesity has become a major global health challenge of the 21st century, as it is associated with the onset of type 2 diabetes (T2D) and cardiovascular complications, even at a very early age in life. The root causes of pediatric obesity remain incompletely understood. The obesity epidemic together with the relationship of obesity to the growing population burden of chronic disease presents unprecedented research opportunities and challenges.
View Article and Find Full Text PDFAlpha TC1 (αTC1) and Beta-TC-6 (βTC6) mouse islet cell lines are cellular models of islet (dys)function and type 2 diabetes (T2D). However, genomic characteristics of these cells, and their similarities to primary islet alpha and beta cells, are undefined. Here, we report the epigenomic (ATAC-seq) and transcriptomic (RNA-seq) landscapes of αTC1 and βTC6 cells.
View Article and Find Full Text PDFMolecular mechanisms remain unknown for most type 2 diabetes genome-wide association study identified loci. Variants associated with type 2 diabetes and fasting glucose levels reside in introns of , a gene that encodes adenylate cyclase 5. Adenylate cyclase 5 catalyzes the production of cyclic AMP, which is a second messenger molecule involved in cell signaling and pancreatic β-cell insulin secretion.
View Article and Find Full Text PDFObjective: In this study, we aimed to explore the mechanism by which rs7903146 risk allele confers susceptibility to impaired glucose tolerance (IGT) or type 2 diabetes (T2D) in obese adolescents.
Research Design And Methods: The rs7903146 variant in the gene was genotyped in a multiethnic cohort of 955 youths. All subjects underwent an oral glucose tolerance test with the use of the Oral Minimal Model to assess insulin secretion, and 33 subjects underwent a hyperinsulinemic-euglycemic clamp.
Proc Natl Acad Sci U S A
February 2017
Genome-wide association studies (GWAS) have identified >100 independent SNPs that modulate the risk of type 2 diabetes (T2D) and related traits. However, the pathogenic mechanisms of most of these SNPs remain elusive. Here, we examined genomic, epigenomic, and transcriptomic profiles in human pancreatic islets to understand the links between genetic variation, chromatin landscape, and gene expression in the context of T2D.
View Article and Find Full Text PDFAs a consequence of the global rise in the prevalence of adolescent obesity, an unprecedented phenomenon of type 2 diabetes has emerged in pediatrics. At the heart of the development of type 2 diabetes lies a key metabolic derangement: insulin resistance (IR). Despite the widespread occurrence of IR affecting an unmeasurable number of youths worldwide, its pathogenesis remains elusive.
View Article and Find Full Text PDFBlood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells.
View Article and Find Full Text PDFInsulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR.
View Article and Find Full Text PDFThe innate immune cell sensor leucine-rich-containing family, pyrin domain containing 3 (NLRP3) inflammasome controls the activation of caspase-1, and the release of proinflammatory cytokines interleukin (IL)-1β and IL-18. The NLRP3 inflammasome is implicated in adipose tissue inflammation and the pathogenesis of insulin resistance. Herein, we tested the hypothesis that adipose tissue inflammation and NLRP3 inflammasome are linked to the downregulation of subcutaneous adipose tissue (SAT) adipogenesis/lipogenesis in obese adolescents with altered abdominal fat partitioning.
View Article and Find Full Text PDFInflammation is well established to significantly impact metabolic diseases. The inflammatory protease caspase-1 has been implicated in metabolic dysfunction; however, a potential role for the related inflammatory caspases is currently unknown. In this study, we investigated a role for caspase-11 and caspase-12 in obesity and insulin resistance.
View Article and Find Full Text PDFIslets of Langerhans contain multiple hormone-producing endocrine cells controlling glucose homeostasis. Transcription establishes and maintains islet cellular fates and identities. Genetic and environmental disruption of islet transcription triggers cellular dysfunction and disease.
View Article and Find Full Text PDFImpaired insulin-mediated suppression of hepatic glucose production (HGP) plays a major role in the pathogenesis of type 2 diabetes (T2D), yet the molecular mechanism by which this occurs remains unknown. Using a novel in vivo metabolomics approach, we show that the major mechanism by which insulin suppresses HGP is through reductions in hepatic acetyl CoA by suppression of lipolysis in white adipose tissue (WAT) leading to reductions in pyruvate carboxylase flux. This mechanism was confirmed in mice and rats with genetic ablation of insulin signaling and mice lacking adipose triglyceride lipase.
View Article and Find Full Text PDFObjective: Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared with glucose ingestion. This study evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity.
View Article and Find Full Text PDFThe ever growing prevalence of childhood obesity is being accompanied by an increase in the pediatric population of diseases once believed to be exclusive of the adulthood such as the metabolic syndrome (MS). The MS has been defined as the link between insulin resistance, hypertension, dyslipidemia, impaired glucose tolerance, and other metabolic abnormalities associated with an increased risk of atherosclerotic cardiovascular diseases in adults. In this review, we will discuss the peculiar aspects of the pediatric MS and the role of novel molecules and biomarkers in its pathogenesis.
View Article and Find Full Text PDF