Publications by authors named "Kurochkin M"

Remote thermal sensing has emerged as a temperature detection technique for tasks in which standard contact thermometers cannot be used due to environment or dimension limitations. One of such challenging tasks is the measurement of temperature in microelectronics. Here, optical thermometry using co-doped and mixed dual-center GdO:Tb/Eusamples were realized.

View Article and Find Full Text PDF

Modification of T-lymphocytes, which are capable of paracellular transmigration is a promising trend in modern personalized medicine. However, the delivery of required concentrations of functionalized T-cells to the target tissues remains a problem. We describe a novel method to functionalize T-cells with magnetic nanocapsules and target them with electromagnetic tweezers.

View Article and Find Full Text PDF

While microbubbles (MB) are routinely used for ultrasound (US) imaging, magnetic MB are increasingly explored as they can be guided to specific sites of interest by applied magnetic field gradient. This requires the MB shell composition tuning to prolong MB stability and provide functionalization capabilities with magnetic nanoparticles. Hence, we developed air-filled MB stabilized by a protein-polymer complex of bovine serum albumin (BSA) and poly-L-arginine (pArg) of different molecular weights, showing that pArg of moderate molecular weight distribution (15-70 kDa) enabled MB with greater stability and acoustic response while preserving MB narrow diameters and the relative viability of THP-1 cells after 48 h of incubation.

View Article and Find Full Text PDF

Hemangioma, the predominant benign tumor occurring in infancy, exhibits a wide range of prognoses and associated outcomes. The accurate determination of prognosis through noninvasive imaging modalities holds essential importance in enabling effective personalized treatment strategies and minimizing unnecessary surgical interventions for individual patients. The present study focuses on advancing the personalized prognosis of hemangioma by leveraging noninvasive optical sensing technologies by the development of a novel rapid hyperspectral sensor (image collection in 5 s, lateral resolution of 10 μm) that is capable of quantifying hemoglobin oxygenation and vascularization dynamics during the course of tumor evolution.

View Article and Find Full Text PDF

A stimuli-responsive polymeric three-dimensional microstructured film (PTMF) is a 3D structure with an array of sealed chambers on its external surface. In this work, we demonstrate the use of PTMF as a laser-triggered stimulus-response system for local in vivo targeted blood vessels stimulation by vasoactive substances. The native vascular networks of the mouse mesentery were used as model tissues.

View Article and Find Full Text PDF

Towards the improvement of the efficient study of drugs and contrast agents, the 3D microfluidic platforms are currently being actively developed for testing these substances and particles in vitro. Here, we have elaborated a microfluidic lymph node-on-chip (LNOC) as a tissue engineered model of a secondary tumor in lymph node (LN) formed due to the metastasis process. The developed chip has a collagen sponge with a 3D spheroid of 4T1 cells located inside, simulating secondary tumor in the lymphoid tissue.

View Article and Find Full Text PDF

In the last decade much attention has been paid to the development of novel approaches in luminescence thermometry, which could allow contactless and noninvasive temperature sensing when traditional thermometers are useless. Typically, an optical thermometer exploits a distinct luminescence parameter to define temperature. However, the use of multimode sensors can significantly broaden the working range and improve the reliability of the temperature measurements.

View Article and Find Full Text PDF

Single doped CaWO:Erphosphors were synthesized and studied for application of optical thermal sensing within a wide range of 98-773 K. Ratiometric strategy utilizing two luminescence intensity ratios, one between host and Erband (LIR) and second between different Ertransitions (LIR), results in self-referencing temperature readouts. The presence of two temperature-dependent parameters could improve thermometric characteristics and broaden the working temperature range compared to a usual single-parameter thermometer.

View Article and Find Full Text PDF

Crystalline inorganic nanoparticles doped with rare earth ions are widely used in a variety of scientific and industry applications due to the unique spectroscopic properties. The temperature dependence of their luminescence parameters makes them promising candidates for self-referencing thermal sensing. Here we report single phase YVO nanoparticles doped with different pairs of rare earth ions (Nd/Er, Tm/Er and Nd/Tm) for contactless ratiometric thermometry within a wide temperature range of 298-573 K.

View Article and Find Full Text PDF

During last decade luminescence thermometry has become a widely studied research field due to its potential applications for real time contactless temperature sensing where usual thermometers cannot be used. Special attention is paid to the development of accurate and reliable thermal sensors with simple reading. To address existing problems of ratiometric thermometers based on thermally-coupled levels, LuVO:Nd/Ybthermal sensors were studied as a proof-of-concept of dual-center thermometer obtained by co-doping or mixture.

View Article and Find Full Text PDF

Accurate contactless thermometry is required in many rapidly developing modern applications such as biomedicine, micro- and nanoelectronics, and integrated optics. Ratiometric luminescence thermal sensing attracts a lot of attention due to its robustness toward systematic errors. Herein, a phonon-assisted upconversion in LuVO:Nd/Yb nanophosphors was successfully applied for temperature measurements within the 323-873 K range via the luminescence intensity ratio technique.

View Article and Find Full Text PDF

The status of sentinel lymph nodes (SLNs) has a substantial prognostic value because these nodes are the first place where cancer cells accumulate along their spreading route. Routine SLN biopsy ("gold standard") involves peritumoral injections of radiopharmaceuticals, such as technetium-99m, which has obvious disadvantages. This review examines the methods used as "gold standard" analogs to diagnose SLNs.

View Article and Find Full Text PDF

Accurate thermal sensing with good spatial resolution is currently required in a variety of scientific and technological areas. Luminescence nanothermometry has shown competitive superiority in contactless temperature sensing, especially at the nanoscale. To broaden the use of such thermometers, development of a novel sensor type with high sensitivity and resolution is highly demanded.

View Article and Find Full Text PDF

The patterned microchamber arrays based on biocompatible polymers are a versatile cargo delivery system for drug storage and site-/time-specific drug release on demand. However, functional evidence of their action on nerve cells, in particular their potential for enabling patterned neuronal morphogenesis, remains unclear. Recently, we have established that the polylactic acid (PLA)-based microchamber arrays are biocompatible with human cells of neuronal phenotype and provide safe loading for hydrophilic substances of low molecular weight, with successive site-specific cargo release on-demand to trigger local cell responses.

View Article and Find Full Text PDF

Photosensitive polymeric three-dimensional microstructured film (PTMF) is a new type of patterned polymeric films functionalized with an array of sealed hollow 3D containers. The microstructured system with enclosed chemicals provides a tool for the even distribution of biologically active substances on a given surface that can be deposited on medical implants or used as a cells substrate. In this work, we proposed a way for photothermally activating and releasing encapsulated substances at picogram amounts from the PTMF surface in different environments using laser radiation delivered with a multimode optical fiber.

View Article and Find Full Text PDF

The development of new contactless thermal nanosensors based on a ratiometric approach is of significant interest. To overcome the intrinsic limitations of thermally coupled levels, a dual activation strategy was applied. Dual activation was performed using co-doped single nanoparticles and a binary mixture of single-doped nanoparticles.

View Article and Find Full Text PDF

General anesthesia may cause damage of the central nervous system and cognitive dysfunction in the postoperative period. A new intranasal form of Noopept (N-Phenylacetyl-L-prolylglycine ethyl ester) was developed by our team at the Department of the medical technology (Zaporizhzhia State Medical University, Ukraine). The objectives of this investigation were the study of neuroprotective action of Noopept and to prove using in the clinic for correction of amnestic and behavioral disorders after ketamine anesthesia.

View Article and Find Full Text PDF

We report systematic study of Dy-doped YVO nanophosphors synthesized via modified Pechini technique. Effect of calcination temperature and doping concentration on structure and luminescence has been investigated. XRD and Raman spectroscopy revealed preparation of single phase nanoparticles without any impurities.

View Article and Find Full Text PDF

Achieving a combination of real-time diagnosis and therapy in a single platform with sensitive thermometry and efficient heat production is a crucial step towards controllable photothermal therapy. Here, Nd-doped YO nanoparticles prepared using the combined Pechini-foaming technique operating in the first and second biological windows were demonstrated as thermal sensors within the wide temperature range of 123-873 K, and as heaters with a temperature increase of 100 K. Thermal sensing was performed based on various approaches: luminescence intensity ratio (electronic levels; Stark sublevels), spectral line position and line bandwidth were used as temperature-dependent parameters.

View Article and Find Full Text PDF

Targeted cell delivery via magnetically sensitive microcapsules of an applied magnetic field would advance localized cell transplantation therapy, by which healthy cells can be introduced into tissues to repair damaged or diseased organs. In the present research, we implement magnetically sensitive cells via an uptake of microcapsules containing magnetic nanoparticles in their walls. As is shown in an example of the MA-104 cell line, the magnetic polyelectrolyte multilayer capsules have no toxicity effect on the cells after internalization.

View Article and Find Full Text PDF
Article Synopsis
  • Controlled drug delivery and gene expression are crucial for various medical applications, such as cancer treatment and regenerative medicine, requiring precise methods to release drugs directly to cells.
  • This study introduces micro-chamber arrays made of biodegradable polylactic acid that can store hydrophilic molecules and release them using near-infrared lasers.
  • The method employs biocompatible gold nanoparticles to facilitate the opening of these micro-chambers, allowing for targeted delivery of substances like doxycycline while measuring effectiveness through biosynthesis in C2C12 cells.
View Article and Find Full Text PDF

We report on the potential application of NIR-to-NIR Nd-doped yttrium vanadate nanoparticles with both emission and excitation operating within biological windows as thermal sensors in 123-873 K temperature range. It was demonstrated that thermal sensing could be based on three temperature dependent luminescence parameters: the luminescence intensity ratio, the spectral line position and the line bandwidth. Advantages and limitations of each sensing parameter as well as thermal sensitivity and thermal uncertainty were calculated and discussed.

View Article and Find Full Text PDF

Remote navigation and targeted delivery of biologically active compounds is one of the current challenges in the development of drug delivery systems. Modern methods of micro- and nanofabrication give us new opportunities to produce particles and capsules bearing cargo to deploy and possess magnetic properties to be externally navigated. In this work we explore multilayer composite magnetic microcapsules as targeted delivery systems in vitro and in vivo studies under natural conditions of living organism.

View Article and Find Full Text PDF

Anatomic research have been done on 20 dead bodies of newborns for updating of caudal block level. For definition of caudal block level it was proved, that injection of coloring agent in volume of 0.5 ml/kg, 1 ml/kg and 1.

View Article and Find Full Text PDF

The aim of the work was to develop criteria of perioperative intensive therapy efficiency in surgical neonates by hemodynamic, acid--base status, oxygen transport and pulmonary hydration studying and evaluating. The study of hemodynamics, oxygen transport, pulmonary hydration was performed in 69 infants with surgical pathology. In 36 children neuroaxial central blockades were used on the background of general anesthesia.

View Article and Find Full Text PDF