Publications by authors named "Kurmyshkina O"

Background: Molecular diversity of virus-associated cervical cancer remains a relatively underexplored issue, and interrelations of immunologic and angiogenic features during the establishment of a particular landscape of the cervical cancer microenvironment are not well-characterized, especially for its earliest clinical stages, although this may provide insight into the mechanisms behind the differences in tumor aggressiveness, treatment responsiveness and prognosis. In this research, we were aimed at identifying transcriptomic landscapes of early-stage cervical carcinoma that differ substantially in their immune-related characteristics, patterns of signaling pathways and composition of the microenvironment in comparison with immediate precursor (intraepithelial) lesions.

Methods: We performed the Illumina platform-based RNA sequencing using a panel of fresh tissue samples that included human papillomavirus-positive cervical intraepithelial neoplastic lesions (CIN), invasive squamous carcinoma of the cervix of FIGO IA1-IIB stages, and morphologically normal epithelium.

View Article and Find Full Text PDF

The review summarizes findings from the studies based on the application of technologies for transcriptome analysis to modern cellular model systems of human papillomavirus-associated cancer (HPV) (cervical cancer, head and neck tumors). A diversity of three-dimensional cancer models, such as spheroids, organoids (organotypic cultures), explants, mouse xenografts, are addressed. Particular attention is paid to the use of patient-derived biomaterial for establishing short-term cultures of primary tumor cells, as well as generating multicomponent (heterocellular) systems that comprise, together with the tumor component, other elements of its microenvironment.

View Article and Find Full Text PDF

The establishment of a proangiogenic phenotype and epithelial-to-mesenchymal transition (EMT) are considered as critical events that promote the induction of invasive growth in epithelial tumors, and stimulation of lymphangiogenesis is believed to confer the capacity for early dissemination to cancer cells. Recent research has revealed substantial interdependence between these processes at the molecular level as they rely on common signaling networks. Of great interest are the molecular mechanisms of (lymph-)angiogenesis and EMT associated with the earliest stages of transition from intraepithelial development to invasive growth, as they could provide the source of potentially valuable tools for targeting tumor metastasis.

View Article and Find Full Text PDF

Background: Processes and mechanisms responsible for systemic immune suppression in early-stage cervical cancer remain substantially underinvestigated. In this work, we focused on studying the frequencies of circulating regulatory T (CD4 and CD8 Tregs) and NK (NKregs) cells in parallel with assessment of apoptotic markers expression in T cells from patients with preinvasive and microinvasive cervical cancer, with the aim to determine whether up-regulation of apoptosis-associated markers in Т lymphocytes accompanies cervical cancer development and correlates with the change in percentages of regulatory cell populations at systemic level during the initial stages of invasive cervical cancer progression.

Methods: Fourty two women with histologically confirmed cervical intraepithelial neoplasia grade 3 (CIN3, including carcinoma in situ) or cervical cancer (stage IA) and 30 healthy women (control) were enrolled in the study.

View Article and Find Full Text PDF

Thanks to the numerous studies that have been carried out recently in the field of cytosolic DNA sensing, STING (Stimulator of Interferon Genes) is now recognized as a key mediator of innate immune signaling. A substantial body of evidence derived from in vivo mouse models demonstrates that STING-regulated pathways underlie the pathogenesis of many diseases including infectious diseases and cancers. It has also become evident from these studies that STING is a promising therapeutic target for the treatment of cancer.

View Article and Find Full Text PDF

Ability to stimulate angiogenesis/lymphangiogenesis is recognized as an inherent feature of cancer cells providing necessary conditions for their growth and dissemination. "Angiogenic switch" is one of the earliest consequences of malignant transformation that encompasses a great number of genes and triggers a complex set of signaling cascades in endothelial cells. The processes of tumor microvasculature development are closely connected to the steps of carcinogenesis (from benign lesions to invasive forms) and occur through multiple deviations from the norm.

View Article and Find Full Text PDF

The capacity for immune surveilance and protection against genetically alien agents is a basic property of multicellular organisms, and increasing significance in realizing this, capacity is assigned to mechanisms of innate immunity. The data accumulated to date show that many components of these mechanisms have a very wide spectrum of biological functions and play essential roles at different stages of ontogeny. An illustrative example is the signal system activated by tumor necrosis factor alpha (TNFα), which is responsible for the inflammation process.

View Article and Find Full Text PDF

In this review we summarize the results of studies employing high-throughput methods of profiling of HPV-associated cervical intraepithelial neoplasia (CIN) and squamous cell cervical cancers at key intracellular regulatory levels to demonstrate the unique identity of the landscape of molecular changes underlying this oncopathology, and to show how these changes are related to the 'natural history' of cervical cancer progression and the formation of clinically significant properties of tumors. A step-wise character of cervical cancer progression is a morphologically well-described fact and, as evidenced by genome-wide screenings, it is indeed the consistent change of the molecular profiles of HPV-infected epithelial cells through which they progressively acquire the phenotypic hallmarks of cancerous cells. In this sense, CIN/cervical cancer is a unique model for studying the driving forces and mechanisms of carcinogenesis.

View Article and Find Full Text PDF

We have recently shown that the carbohydrate-binding pattern of galectins in cells differs from that determined in artificial (non-cellular) test-systems. To understand the observed discrepancy, we compared several test-systems differing in the mode of galectin presentation on solid phase. The most representative system was an assay where the binding of galectin (human galectins-1 and -3 were studied) to asialofetuin immobilized on solid phase was inhibited by polyacrylamide glycoconjugates, Glyc-PAA.

View Article and Find Full Text PDF

Polyacrylamide glycoconjugates, Glyc-PAA, having various tags or labels are convenient tools for analysis of cellular lectins. Adaptation of such glycoprobes for flow cytometry allows us to reveal lectins expressed on cell surface and analyze their carbohydrate specificity as well as functionality. Localization of lectins is visualized by labeling of cells with fluorescein-tagged glycoprobes, Glyc-PAA-fluo, in combination with fluorescent microscopy techniques.

View Article and Find Full Text PDF

Galectins are a family of beta-galactoside binding lectins, homological by a sequence of the carbohydrate-binding site. In this review literature data about structure and carbohydrate specificity of galectins are discussed. The role of galectins in the regulation of cell adhesion in immune response, inflammation, and cancer progression is considered.

View Article and Find Full Text PDF

The involvement of galectins as pleiotropic regulators of cell adhesion and growth in disease progression explains the interest to define their ligand-binding properties. Toward this end, it is desirable to approach in vivo conditions to attain medical relevance. In order to simulate physiological conditions with cell surface glycans as recognition sites and galectins as mediators of intercellular contacts we developed an assay using galectin-loaded Raji cells.

View Article and Find Full Text PDF