Publications by authors named "Kurjan J"

Cucurbit downy mildew (CDM), caused by the oomycete pathogen Pseudoperonospora cubensis, is a devastating disease that affects cucurbit species worldwide. This obligate, wind-dispersed pathogen does not overwinter in Michigan or other northern regions and new isolates can enter the state throughout the growing season. To evaluate the regional and temporal population structure of P.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae RGS protein Sst2p is involved in desensitization to pheromone and acts as a GTPase-activating protein for the Galpha subunit Gpa1p. Other results indicate that Sst2p acts through Mpt5p and that this action occurs downstream of Fus3p and through Cln3p/Cdc28p. Our results indicate that the interaction of Sst2p with Mpt5p requires the N-terminal MPI (Mpt5p-interacting) domain of Sst2p and is independent of the C-terminal RGS domain.

View Article and Find Full Text PDF

a-Agglutinin from Saccharomyces cerevisiae is a cell adhesion glycoprotein expressed on the surface of cells of a mating type and consists of an anchorage subunit Aga1p and a receptor binding subunit Aga2p. Cell wall attachment of Aga2p is mediated through two disulfide bonds to Aga1p (Cappellaro, C., Baldermann, C.

View Article and Find Full Text PDF

The mushroom-producing fungus Schizophyllum commune has thousands of mating types defined, in part, by numerous lipopeptide pheromones and their G protein-linked receptors. Compatible combinations of pheromones and receptors encoded by different mating types regulate a pathway of sexual development leading to mushroom formation and meiosis. A complex set of pheromone-receptor interactions maximizes the likelihood of outbreeding; for example, a single pheromone can activate more than one receptor and a single receptor can be activated by more than one pheromone.

View Article and Find Full Text PDF

The response to pheromone in Saccharomyces cerevisiae involves a heterotrimeric G protein composed of Gpa1p (alpha subunit), Ste4p (beta) and Ste18p (gamma). The switch II region of G alpha subunits is involved in several protein-protein interactions and an intrinsic GTPase activity. To investigate the role of this region of Gpa1p, we have analyzed the effect of switch II mutations.

View Article and Find Full Text PDF

The yeast G alpha subunit, Gpa1p, plays a negative role in the pheromone response pathway. The gpa1Val50 mutant was previously shown to have a growth defect, consistent with the GTPase defect predicted for this mutation, and greatly reduced mating. Various explanations for the mating defect have been proposed.

View Article and Find Full Text PDF

SST2 plays an important role in the sensitivity of yeast cells to pheromone and in recovery from pheromone-induced G1 arrest. Recently, a family of Sst2p homologs that act as GTPase-activating proteins (GAPs) for G alpha subunits has been identified. We have identified an interaction between Sst2p and the previously identified Mpt5p by using the two-hybrid system.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae G protein alpha subunit Gpa1p is involved in the response of both MATa and MAT alpha cells to pheromone. We mutagenized the GPA1 C terminus to characterize the receptor-interacting domain and to investigate the specificity of the interactions with the a- and alpha-factor receptors. The results are discussed with respect to a structural model of the Gpa1p C terminus that was based on the crystal structure of bovine transducin.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae G protein beta gamma dimer, Ste4p/Ste18p, acts downstream of the alpha subunit, Gpa1p, to activate the pheromone response pathway and therefore must interact with a downstream effector. Synthetic sterile mutants that exacerbate the phenotype of ste4-ts mutations were isolated to identify proteins that functionally interact with Ste4p. The identification of a ste18 mutant indicated that this screen could identify proteins that interact directly with Ste4p.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae adhesion protein alpha-agglutinin (Ag alpha 1p) is expressed by alpha cells and binds to the complementary a-agglutinin expressed by a cells. The N-terminal half of alpha-agglutinin is sufficient for ligand binding and has been proposed to contain an immunoglobulin (Ig) fold domain. Based on a structural homology model for this domain and a previously identified critical residue (His292), we made Ag alpha 1p mutations in three discontinuous patches of the domain that are predicted to be in close proximity to His292 in the model.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae adhesion protein alpha-agglutinin is expressed by cells of alpha mating type. On the basis of sequence similarities, alpha-agglutinin has been proposed to contain variable-type immunoglobulin-like (IgV) domains. The low level of sequence similarity to IgV domains of known structure made homology modeling using standard sequence-based alignment algorithms impossible.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae cell adhesion protein a-agglutinin is composed of an anchorage subunit (Aga1p) and an adhesion subunit (Aga2p). Although functional a-agglutinin is expressed only by a cells, previous results indicated that AGA1 RNA is expressed in both a and alpha cells after pheromone induction. Expression of the Aga2p adhesion subunit in alpha cells allowed a-agglutinability, indicating that alpha cells express the a-agglutinin anchorage subunit, although no role for Aga1p in alpha cells has been identified.

View Article and Find Full Text PDF

The cell adhesion protein alpha-agglutinin is bound to the outer surface of the Saccharomyces cerevisiae cell wall and mediates cell-cell contact in mating. alpha-Agglutinin is modified by addition of a glycosyl phosphatidylinositol (GPI) anchor as it traverses the secretory pathway. The presence of a GPI anchor is essential for cross-linking into the wall, but the fatty acid and inositol components of the anchor are lost before cell wall association (Lu, C.

View Article and Find Full Text PDF

Saccharomyces cerevisiae alpha-agglutinin is a cell wall-anchored adhesion glycoprotein. The previously identified 140-kDa form, which contains a glycosyl-phosphatidylinositol (GPI) anchor (D. Wojciechowicz, C.

View Article and Find Full Text PDF

alpha-Agglutinin is a cell adhesion glycoprotein expressed on the cell wall of Saccharomyces cerevisiae alpha cells. Binding of alpha-agglutinin to its ligand a-agglutinin, expressed by a cells, mediates cell-cell contact during mating. Analysis of truncations of the 650-amino-acid alpha-agglutinin structural gene AG alpha 1 delineated functional domains of alpha-agglutinin.

View Article and Find Full Text PDF

The sexual agglutinins of the budding yeasts are cell adhesion proteins that promote aggregation of cells during mating. In each yeast species, complementary agglutinins are expressed by cells of opposite mating type that interact to mediate aggregation. Saccharomyces cerevisiae alpha-agglutinin and its analogs from other yeasts are single-subunit glycoproteins that contain N-linked and O-linked oligosaccharides.

View Article and Find Full Text PDF

Saccharomyces cerevisiae a and alpha cells express the complementary cell surface glycoproteins a-agglutinin and alpha-agglutinin, respectively, which interact with one another to promote cellular aggregation during mating. Treatment of S. cerevisiae a cells with reducing agents releases the binding subunit of a-agglutinin, which has been purified and characterized; little biochemical information on the overall structure of a-agglutinin is available.

View Article and Find Full Text PDF

Several domains of guanine nucleotide-binding proteins are conserved and form the guanine nucleotide-binding pocket. Mutations in these domains in EF-Tu, ras, and Gas have been shown to result in informative phenotypes. We made several analogous changes in SCG1, which encodes the alpha subunit of the G protein involved in pheromone response in yeast.

View Article and Find Full Text PDF

The carboxyl termini of alpha subunits of mammalian G proteins have been implicated in receptor interactions. We have used a genetic analysis to test such a role for the carboxyl terminus of Scg1, the alpha subunit involved in the yeast pheromone response pathway. A 22-amino-acid truncation (scg1Amb451) resulted in defects in growth and cellular morphology.

View Article and Find Full Text PDF

The peptide pheromones secreted by a and alpha cells (called a-factor and alpha-factor, respectively) are each encoded by two structural genes. For strains of either mating type, addition of exogenous pheromone does not alleviate the mating defect of mutants with disruptions of both structural genes. In addition, a particular insertion mutation in the major alpha-factor structural gene (MF alpha 1) that should result in an altered product inhibits alpha mating.

View Article and Find Full Text PDF

The MF alpha 1 gene encodes a precursor, prepro-alpha-factor, that undergoes several proteolytic processing steps within the classical secretory pathway to produce the mature peptide pheromone, alpha-factor. To investigate the role of structural features of the MF alpha 1 precursor in alpha-factor production, we analyzed the effect of mf alpha 1 mutations that alter precursor structure in a number of ways. These mutations resulted in decreased alpha-factor secretion and intracellular accumulation of pro-alpha-factor.

View Article and Find Full Text PDF

Scg1, the product of the Saccharomyces cerevisiae SCG1 (also called GPA1) gene, is homologous to the alpha subunits of G proteins involved in signal transduction in mammalian cells. Scg1 negatively controls the pheromone response pathway in haploid cells. Either pheromonal activation or an scg1 null mutation relieves the negative control and leads to an arrest of cell growth in the G1 phase of the cell cycle.

View Article and Find Full Text PDF

We have cloned the alpha-agglutinin structural gene, AG alpha 1, by the isolation of alpha-specific agglutination-defective mutants, followed by isolation of a complementing plasmid. Independently isolated alpha-specific agglutination-defective mutations were in a single complementation group, consistent with biochemical results indicating that the alpha-agglutinin is composed of a single polypeptide. Mapping results suggested that the complementation group identified by these mutants is allelic to the ag alpha 1 mutation identified previously.

View Article and Find Full Text PDF