Publications by authors named "Kurinov I"

It has been shown previously that a set of three modifications-termed S1, Crystal Kappa, and elbow-act synergistically to improve the crystallizability of an antigen-binding fragment (Fab) framework. Here, we prepared a phage-displayed library and performed crystallization screenings to identify additional substitutions-located near the heavy-chain elbow region-which cooperate with the S1, Crystal Kappa, and elbow modifications to increase expression and improve crystallizability of the Fab framework even further. One substitution (K141Q) supports the signature Crystal Kappa-mediated Fab:Fab crystal lattice packing interaction.

View Article and Find Full Text PDF

The RAS-MAPK pathway regulates cell proliferation, differentiation and survival, and its dysregulation is associated with cancer development. The pathway minimally comprises the small GTPase RAS and the kinases RAF, MEK and ERK. Activation of RAF by RAS is notoriously intricate and remains only partially understood.

View Article and Find Full Text PDF

Smurf1 and Smurf2 are two closely related member of the HECT (homologous to E6AP carboxy terminus) E3 ubiquitin ligase family and play important roles in the regulation of various cellular processes. Both were initially identified to regulate transforming growth factor-β and bone morphogenetic protein signaling pathways through regulating Smad protein stability and are now implicated in various pathological processes. Generally, E3 ligases, of which over 800 exist in humans, are ideal targets for inhibition as they determine substrate specificity; however, there are few inhibitors with the ability to precisely target a particular E3 ligase of interest.

View Article and Find Full Text PDF

The atomic-resolution structural information that X-ray crystallography can provide on the binding interface between a Fab and its cognate antigen is highly valuable for understanding the mechanism of interaction. However, many Fab:antigen complexes are recalcitrant to crystallization, making the endeavor a considerable effort with no guarantee of success. Consequently, there have been significant steps taken to increase the likelihood of Fab:antigen complex crystallization by altering the Fab framework.

View Article and Find Full Text PDF

CDK11 is a cyclin-dependent kinase that controls proliferation by regulating transcription, RNA splicing, and the cell cycle. As its activity is increasingly associated with cancer, CDK11 is an attractive target for the development of small-molecule inhibitors. However, the development of CDK11 inhibitors with limited off-target effects against other CDKs poses a challenge based on the high conservation of sequence across family members.

View Article and Find Full Text PDF

DNA polymerase theta (Polθ) is an attractive synthetic lethal target for drug discovery, predicted to be efficacious against breast and ovarian cancers harboring BRCA-mutant alleles. Here, we describe our hit-to-lead efforts in search of a selective inhibitor of human Polθ (encoded by POLQ). A high-throughput screening campaign of 350,000 compounds identified an 11 micromolar hit, giving rise to the N2-substituted fused pyrazolo series, which was validated by biophysical methods.

View Article and Find Full Text PDF

Targeted protein degradation (TPD) strategies exploit bivalent small molecules to bridge substrate proteins to an E3 ubiquitin ligase to induce substrate degradation. Few E3s have been explored as degradation effectors due to a dearth of E3-binding small molecules. We show that genetically induced recruitment to the GID4 subunit of the CTLH E3 complex induces protein degradation.

View Article and Find Full Text PDF
Article Synopsis
  • Single-wavelength anomalous diffraction (SAD) is used to solve macromolecular structures by addressing the phase problem through accurate intensity measurements of Bijvoet pairs.
  • Conducting SAD experiments at cryogenic temperatures can lead to changes in protein structure and complicate data merging from different crystals.
  • A new approach at room temperature (295 K) successfully solved four protein structures, demonstrating the advantages of capturing natural conformations and enabling automatic phasing and model building.
View Article and Find Full Text PDF

PKMYT1 is a regulator of CDK1 phosphorylation and is a compelling therapeutic target for the treatment of certain types of DNA damage response cancers due to its established synthetic lethal relationship with amplification. To date, no selective inhibitors have been reported for this kinase that would allow for investigation of the pharmacological role of PKMYT1. To address this need compound was identified as a weak PKMYT1 inhibitor.

View Article and Find Full Text PDF

A comprehensive analysis of the phosphoproteome is essential for understanding molecular mechanisms of human diseases. However, current tools used to enrich phosphotyrosine (pTyr) are limited in their applicability and scope. Here, we engineered new superbinder Src-Homology 2 (SH2) domains that enrich diverse sets of pTyr-peptides.

View Article and Find Full Text PDF

Ubiquitin (Ub)-binding domains embedded in intracellular proteins act as readers of the complex Ub code and contribute to regulation of numerous eukaryotic processes. Ub-interacting motifs (UIMs) are short α-helical modular recognition elements whose role in controlling proteostasis and signal transduction has been poorly investigated. Moreover, impaired or aberrant activity of UIM-containing proteins has been implicated in numerous diseases, but targeting modular recognition elements in proteins remains a major challenge.

View Article and Find Full Text PDF

Skp2 and cyclin A are cell-cycle regulators that control the activity of CDK2. Cyclin A acts as an activator and substrate recruitment factor of CDK2, while Skp2 mediates the ubiquitination and subsequent destruction of the CDK inhibitor protein p27. The N terminus of Skp2 can interact directly with cyclin A but is not required for p27 ubiquitination.

View Article and Find Full Text PDF

ADP-ribosylation is a reversible and site-specific post-translational modification that regulates a wide array of cellular signaling pathways. Regulation of ADP-ribosylation is vital for maintaining genomic integrity, and uncontrolled accumulation of poly(ADP-ribosyl)ation triggers a poly(ADP-ribose) (PAR)-dependent release of apoptosis-inducing factor from mitochondria, leading to cell death. ADP-ribosyl-acceptor hydrolase 3 (ARH3) cleaves PAR and mono(ADP-ribosyl)ation at serine following DNA damage.

View Article and Find Full Text PDF

The Parkin co-regulated gene protein (PACRG) binds at the inner junction between doublet microtubules of the axoneme, a structure found in flagella and cilia. PACRG binds to the adaptor protein meiosis expressed gene 1 (MEIG1), but how they bind to microtubules is unknown. Here, we report the crystal structure of human PACRG in complex with MEIG1.

View Article and Find Full Text PDF

The RAF family kinases function in the RAS-ERK pathway to transmit signals from activated RAS to the downstream kinases MEK and ERK. This pathway regulates cell proliferation, differentiation and survival, enabling mutations in RAS and RAF to act as potent drivers of human cancers. Drugs targeting the prevalent oncogenic mutant BRAF(V600E) have shown great efficacy in the clinic, but long-term effectiveness is limited by resistance mechanisms that often exploit the dimerization-dependent process by which RAF kinases are activated.

View Article and Find Full Text PDF

The small GTPases H, K, and NRAS are molecular switches indispensable for proper regulation of cellular proliferation and growth. Several mutations in the genes encoding members of this protein family are associated with cancer and result in aberrant activation of signaling processes caused by a deregulated recruitment of downstream effector proteins. In this study, we engineered variants of the Ras-binding domain (RBD) of the C-Raf proto-oncogene, Ser/Thr kinase (CRAF).

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers utilized phage display to create specific ubiquitin variants (UbVs) that target the backside of E2 enzymes, effectively inhibiting their function without interfering with initial ubiquitin charging.
  • * The study revealed unique molecular interactions between UbVs and different E2 proteins, showcasing a common backside pocket that can be targeted for better inhibitor design and development in therapies.
View Article and Find Full Text PDF

One effective means to achieve inhibitor specificity for RAF kinases, an important family of cancer drug targets, has been to target the monomeric inactive state conformation of the kinase domain, which, unlike most other kinases, can accommodate sulfonamide-containing drugs such as vemurafenib and dabrafenib because of the presence of a unique pocket specific to inactive RAF kinases. We previously reported an alternate strategy whereby rigidification of a nonselective pyrazolo[3,4-]pyrimidine-based inhibitor through ring closure afforded moderate but appreciable increases in selectivity for RAF kinases. Here, we show that a further application of the rigidification strategy to a different pyrazolopyrimidine-based scaffold dramatically improved selectivity for RAF kinases.

View Article and Find Full Text PDF

Pseudoenzymes have been identified across a diverse range of enzyme classes and fulfill important cellular functions. Examples of pseudoenzymes exist within ubiquitin conjugating and deubiquitinase (DUB) protein families. Here we characterize FAM105A/OTULINL, the only putative pseudodeubiquitinase of the ovarian tumor protease (OTU domain) family in humans.

View Article and Find Full Text PDF

Metabotropic GABA receptors mediate a significant fraction of inhibitory neurotransmission in the brain. Native GABA receptor complexes contain the principal subunits GABA and GABA, which form an obligate heterodimer, and auxiliary subunits, known as potassium channel tetramerization domain-containing proteins (KCTDs). KCTDs interact with GABA receptors and modify the kinetics of GABA receptor signaling.

View Article and Find Full Text PDF

Skp1-Cul1-F-box (SCF) E3 ligases constitute the largest and best-characterized family of the multisubunit E3 ligases with important cellular functions and numerous disease links. The specificity of an SCF E3 ligase is established by one of the 69 human F-box proteins that are recruited to Cul1 through the Skp1 adaptor. We previously reported generation of ubiquitin variants (UbVs) targeting Fbw7 and Fbw11, which inhibit ligase activity by binding at the F-box-Skp1 interface to competitively displace Cul1.

View Article and Find Full Text PDF

The human NDR family kinases control diverse aspects of cell growth, and are regulated through phosphorylation and association with scaffolds such as MOB1. Here, we report the crystal structure of the human NDR1 kinase domain in its non-phosphorylated state, revealing a fully resolved atypically long activation segment that blocks substrate binding and stabilizes a non-productive position of helix αC. Consistent with an auto-inhibitory function, mutations within the activation segment of NDR1 dramatically enhance in vitro kinase activity.

View Article and Find Full Text PDF
Article Synopsis
  • ARH3 is crucial for regulating poly(ADP-ribosyl)ation and maintaining genomic integrity by degrading poly(ADP-ribose) and reversing certain modifications.
  • The enzyme undergoes a significant conformational change when it binds to its substrate, transitioning from a closed to an open state, which enhances its ability to recognize and cleave specific substrates.
  • The unique structural flexibility of ARH3 allows it to effectively target and hydrolyze -linkages in ADP-ribose while ensuring proper positioning of the substrate for effective catalysis.
View Article and Find Full Text PDF

Tumor metastasis is responsible for ~90% of all cancer deaths. One of the key steps of tumor metastasis is tumor cell migration and invasion. Filopodia are cell surface extensions that are critical for tumor cell migration.

View Article and Find Full Text PDF
Article Synopsis
  • RAF family kinases play crucial roles in cancer, but their activation requires dimerization, complicating drug development.
  • KSR1 and KSR2 are pseudokinases that can dimerize with RAF kinases, enhancing their activity, but the mechanisms behind this interaction remain unclear due to KSR's lack of a RAS-binding domain.
  • New findings reveal that BRAF and KSR1 specifically heterodimerize through their regulatory regions, with MEK binding driving this interaction and boosting BRAF's catalytic activity, challenging traditional views of KSR's role as merely a scaffold.
View Article and Find Full Text PDF