Mutations in human ppa2 gene encoding mitochondrial inorganic pyrophosphatase (PPA2) result in the mitochondria malfunction in heart and brain and lead to early death. In comparison with its cytosolic counterpart, PPA2 of any species is a poorly characterized enzyme with a previously unknown 3D structure. We report here the crystal structure of PPA2 from yeast Ogataea parapolymorpha (OpPPA2), as well as its biochemical characterization.
View Article and Find Full Text PDFOne of the most promising ways to solve the problem of reducing the rate of depletion of natural non-renewable components of concrete is their complete or partial replacement with renewable plant counterparts that are industrial and agricultural waste. The research significance of this article lies in the determination at the micro- and macro-levels of the principles of the relationship between the composition, the process of structure formation and the formation of properties of concrete based on coconut shells (CSs), as well as the substantiation at the micro- and macro-levels of the effectiveness of such a solution from the point of view of fundamental and applied materials science. The aim of this study was to solve the problem of substantiating the feasibility of concrete consisting of a mineral cement-sand matrix and aggregate in the form of crushed CS, as well as finding a rational combination of components and studying the structure and characteristics of concrete.
View Article and Find Full Text PDFBackground: Previous studies have demonstrated the formation of stable complexes between inorganic pyrophosphatase (PPase) and three other Escherichia coli enzymes - cupin-type phosphoglucose isomerase (cPGI), class I fructose-1,6-bisphosphate aldolase (FbaB) and l-glutamate decarboxylase (GadA).
Methods: Here, we determined by activity measurements how complex formation between these enzymes affects their activities and oligomeric structure.
Results: cPGI activity was modulated by all partner proteins, but none was reciprocally affected by cPGI.
Hexameric inorganic pyrophosphatase from Mycobacterium tuberculosis (Mt-PPase) has a number of structural and functional features that distinguish it from homologous enzymes widely occurring in living organisms. In particular, it has unusual zones of inter-subunit contacts and lacks the N-terminal region common for other PPases. In this work, we constructed two mutant forms of the enzyme, Ec-Mt-PPase and R14Q-Mt-PPase.
View Article and Find Full Text PDFPyrophosphate arthropathy is the mineralization defect in humans caused by the deposition of microcrystals of calcium pyrophosphate dihydrate in joint tissues. As a potential therapeutic strategy for the treatment of pyrophosphate arthropathy, delivery of exogenous pyrophosphate-hydrolyzing enzymes, inorganic pyrophosphatases (PPases), to the synovial fluid has been suggested. Previously, we synthesized the conjugates of PPase (Ec-PPase) with detonation synthesis nanodiamonds (NDs) as a delivery platform, obtaining the hybrid biomaterial retaining high pyrophosphate-hydrolyzing activity in vitro.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
July 2020
Background: Escherichia coli cells contain a homolog of presumed 5-keto-4-deoxyuronate isomerase (KduI) from pectin-degrading soil bacteria, but the catalytic activity of the E. coli protein (o-KduI) was never demonstrated.
Methods: The known three-dimensional structure of E.
Inorganic pyrophosphatase containing regulatory cystathionine β-synthase (CBS) domains (CBS-PPase) is inhibited by adenosine monophosphate (AMP) and adenosine diphosphate and activated by adenosine triphosphate (ATP) and diadenosine polyphosphates; mononucleotide binding to CBS domains and substrate binding to catalytic domains are characterized by positive cooperativity. This behavior implies three pathways for regulatory signal transduction - between regulatory and active sites, between two active sites, and between two regulatory sites. Bioinformatics analysis pinpointed six charged or polar amino acid residues of CBS-PPase as potentially important for enzyme regulation.
View Article and Find Full Text PDFBiochemistry (Mosc)
August 2017
Pyrophosphate regulates vital cellular reactions, and its level in E. coli cells is under the ultimate control of inorganic pyrophosphatase. The mechanisms involved in the regulation of pyrophosphatase activity still need to be elucidated.
View Article and Find Full Text PDFThe structural analyses of four metabolic enzymes that maintain and regulate the stationary growth phase of Escherichia coli have been performed primarily drawing on the results obtained from solution small angle X-ray scattering (SAXS) and other structural techniques. The proteins are (i) class I fructose-1,6-bisphosphate aldolase (FbaB); (ii) inorganic pyrophosphatase (PPase); (iii) 5-keto-4-deoxyuronate isomerase (KduI); and (iv) glutamate decarboxylase (GadA). The enzyme FbaB, that until now had an unknown structure, is predicted to fold into a TIM-barrel motif that form globular protomers which SAXS experiments show associate into decameric assemblies.
View Article and Find Full Text PDFBackground: Recent evidence indicates that in addition to the T-cell receptor, microclustering is an important mechanism for the activation of the B-cell receptor and the mast cell Fcε-receptor. In macrophages and neutrophils, particles opsonized with immunoglobulin G (IgG) antibodies activate the phagocytic Fcγ-receptor (FcγR) leading to rearrangements of the actin cytoskeleton. The purpose of this study was to establish a system for high-resolution imaging of FcγR microclustering dynamics and the recruitment of the downstream signaling machinery to these microclusters.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2014
Lipids regulate a wide range of biological activities. Since their local concentrations are tightly controlled in a spatiotemporally specific manner, the simultaneous quantification of multiple lipids is essential for elucidation of the complex mechanisms of biological regulation. Here, we report a new method for the simultaneous in situ quantification of two lipid pools in mammalian cells using orthogonal fluorescent sensors.
View Article and Find Full Text PDFActin polymerization is important for vesicle fission during clathrin-mediated endocytosis (CME), and it has been proposed that actin polymerization may promote vesicle fission during CME by providing direct mechanical forces. However, there is no direct evidence in support of this hypothesis. In the present study, the role of actin polymerization in vesicle fission was tested by analyzing the kinetics of the endocytic tubular membrane neck (the fission-pore) with cell-attached capacitance measurements to detect CME of single vesicles in a millisecond time resolution in mouse chromaffin cells.
View Article and Find Full Text PDFEmerging evidence indicates that membrane lipids regulate protein networking by directly interacting with protein-interaction domains (PIDs). As a pilot study to identify and functionally annodate lipid-binding PIDs on a genomic scale, we performed experimental and computational studies of PDZ domains. Characterization of 70 PDZ domains showed that ~40% had submicromolar membrane affinity.
View Article and Find Full Text PDFMembrane lipids are dynamic molecules that play important roles in cell signalling and regulation, but an in situ imaging method for quantitatively tracking lipids in living cells is lacking at present. Here, we report a new chemical method of quantitative lipid imaging using sensors engineered by labelling proteins with an environmentally sensitive fluorophore. A prototype sensor for phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2))--a key signalling lipid in diverse cellular processes--was generated by covalently attaching a single 2-dimethylamino-6-acyl-naphthalene group to the N-terminal α-helix of the engineered epsin1 ENTH domain, a protein that selectively binds PtdIns(4,5)P(2).
View Article and Find Full Text PDFInorganic pyrophosphatase (PPase) is a conserved and essential enzyme catalyzing the hydrolysis of pyrophosphate PP(i). Its activity is required to promote a lot of thermodynamically unfavorable reactions including biosynthesis of activated precursors of sugars and amino acids. Several protein partners of PPase were found so far in Escherichia coli by large-scale approaches.
View Article and Find Full Text PDFIn this paper, kinetic properties of a soluble inorganic pyrophosphatase of family I from Vibrio cholerae (V-PPase), intestinal pathogen and causative agent of human cholera, are characterized in detail, and the crystal structure of a metal-free enzyme is reported. Hydrolytic activity of V-PPase has been studied as a function of pH, concentration of metal cofactors (Mg2+ or Mn2+), and ionic strength. It has been found that, despite the high conservation of amino acid sequences for the known bacterial PPases of family I, V-PPase differs from the other enzymes of the same family in a number of parameters.
View Article and Find Full Text PDFInorganic pyrophosphatase from Mycobacterium tuberculosis (Mt-PPase) is one of the possible targets for the rational design of anti-tuberculosis agents. In this paper, functional properties of this enzyme are characterized in the presence of the most effective activators--Mg2+ and Mn2+. Dissociation constants of Mt-PPase complexed with Mg2+ or Mn2+ are essentially similar to those of Escherichia coli PPase.
View Article and Find Full Text PDFIt has been shown that PP(i), methylenediphosphonate, and ATP act as effectors of Escherichia coli inorganic pyrophosphatase (E-PPase), and that they compete for binding at the allosteric regulatory site. On the basis of chemical modification and computer modeling of a structure of the enzyme-ATP complex, a number of amino acid residues presumably involved in binding effectors has been revealed. Mutant variants Lys112Gln, Lys112Gln/Lys148Gln, and Lys112Gln/Lys115Ala of E-PPase have been obtained, as well as a modified variant of wild type E-PPase ((Ad)wt PPase) with a derivative of ATP chemically attached to the amino group of Lys146.
View Article and Find Full Text PDFThe interaction of Escherichia coli inorganic pyrophosphatase (E-PPase) with effector ATP has been studied. The E-PPase has been chemically modified with the dialdehyde derivative of ATP. It has been established that in the experiment only one molecule of effector ATP is bound to each subunit of the hexameric enzyme.
View Article and Find Full Text PDFHere, we describe high-resolution X-ray structures of Escherichia coli inorganic pyrophosphatase (E-PPase) complexed with the substrate, magnesium, or manganese pyrophosphate. The structures correspond to steps in the catalytic synthesis of enzyme-bound pyrophosphate (PP(i)) in the presence of fluoride as an inhibitor of hydrolysis. The catalytic reaction intermediates were trapped applying a new method that we developed for initiating hydrolytic activity in the E-PPase crystal.
View Article and Find Full Text PDFEscherichia coli inorganic pyrophosphatase (PPase) is a one-domain globular enzyme characterized by its ability to easily undergo minor structure rearrangements involving flexible segments of the polypeptide chain. To elucidate a possible role of these segments in catalysis, catalytic properties of mutant variants of E. coli PPase Gly100Ala and Gly147Val with substitutions in the conservative loops II and III have been studied.
View Article and Find Full Text PDFSoluble inorganic pyrophosphatase from Escherichia coli (E-PPase) is a hexamer forming under acidic conditions the active trimers. We have earlier found that the hydrolysis of a substrate (MgPP(i)) by the trimers as well as a mutant E-PPase Asp26Ala did not obey the Michaelis-Menten equation. To explain this fact, a model has been proposed implying the existence of, aside from an active site, an effector site that can bind PP(i) and thus accelerate MgPP(i) hydrolysis.
View Article and Find Full Text PDFBiochemistry (Mosc)
November 2003
A dimeric form can be obtained from native hexameric Escherichia coli inorganic pyrophosphatase (E-PPase) by destroying the hydrophobic intersubunit contacts, and it has been shown earlier to consist of the subunits of different trimers. The present paper is devoted to the kinetic characterization of such a "double-decked" dimer obtained by the dissociation of either the native enzyme or the mutant variant Glu145Gln. The dimeric form of the native inorganic pyrophosphatase was shown to retain high catalytic efficiency that is in sharp contrast to the dimers obtained as a result of the mutations at the intertrimeric interface.
View Article and Find Full Text PDFEscherichia coli inorganic pyrophosphatase (E-PPase) is a homohexamer formed from two trimers related by a two-fold axis. The residue Asp26 participates in intertrimeric contacts. Kinetics of MgPPi hydrolysis by a mutant Asp26Ala E-PPase is found to not obey Michaelis-Menten equation but can be described within the scheme of activation of hydrolysis by a free PPi binding at an effectory subsite.
View Article and Find Full Text PDFThe conditions were found for obtaining trimeric, dimeric, and monomeric forms of the Escherichia coli inorganic pyrophosphatase from its native hexameric form. Interconversions of the oligomers were studied, and rate constants for their dissociation and association were determined. All forms were found to be catalytically active, with the activity decreasing in the order: hexamer-trimer-dimer-monomer.
View Article and Find Full Text PDF