Publications by authors named "Kurbatov L"

Article Synopsis
  • The ring rot of potato, caused by a bacterial pathogen, is a quarantine disease that threatens the global potato industry, making its detection crucial for control efforts.
  • A new detection system combines CRISPR/Cas13a with NASBA for identifying viable bacteria in potato tubers, allowing for both instrumental and visual detection methods.
  • The system shows a limit of detection as low as 1000 RNA copies per reaction and can be performed in under 2 hours, potentially serving as a routine on-site testing method.
View Article and Find Full Text PDF

The use of CRISPR/Cas nucleases for the development of DNA diagnostic systems in out-of-laboratory conditions (point-of-need testing, PONT) has demonstrated rapid growth in the last few years, starting with the appearance in 2017-2018 of the first diagnostic platforms known as DETECTR and SHERLOCK. The platforms are based on a combination of methods of nucleic acid isothermal amplification with selective CRISPR/Cas detection of target amplicons. This significantly improves the sensitivity and specificity of PONT, making them comparable with or even superior to the sensitivity and specificity of polymerase chain reaction, considered as the "gold standard" of DNA diagnostics.

View Article and Find Full Text PDF

Combining new therapeutics with all--retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells.

View Article and Find Full Text PDF

The approach based on a combination of isothermal recombinase polymerase amplification (RPA), 2'-deoxyuridine-5'-triphosphate modified with tyrosine aromatic group (dUTP-Y1), and direct voltammetric detection of RPA product carrying electroactive labels was successfully applied to the potato pathogen Dickeya solani. The artificial nucleotide dUTP-Y1 demonstrated a good compatibility with RPA, enabling by targeting a section of D. solani genome with a unique sequence to produce the full-size modified products at high levels of substitution of dTTP by dUTP-Y1 (up to 80-90 %) in the reaction mixture.

View Article and Find Full Text PDF

Three novel 2'-deoxyuridine-5'-triphosphates modified with 4-nitrophenyl groups via various linkers (dUTP-N1, dUTP-N2, and dUTP-N3) were tested as bearers of reducible electroactive labels as well as substrates suitable for enzymes used in polymerase chain reaction (PCR) and recombinase polymerase amplification (RPA) with a potential application to direct electrochemical detection of double-stranded deoxyribonucleic acid (dsDNA). In cyclic and square wave voltammograms on carbon screen printed electrodes, the labeled dUTP have demonstrated distinct reduction peaks at potentials of -0.7 V to -0.

View Article and Find Full Text PDF

Plasma membrane proteins with extracellular-exposed domains are responsible for transduction of extracellular signals into intracellular responses, and their accessibility to therapeutic molecules makes them attractive targets for drug development. In this work, using omics technologies and immunochemical methods, we have studied changes in the content of markers of clusters of differentiation (CD markers) of neutrophils (CD33, CD97, CD54, CD38, CD18, CD11b, CD44, and CD71) at the level of transcripts and proteins in NB4, HL-60 and K562 cell lines, induced by the treatment with all-trans-retinoic acid (ATRA). Transcriptomic analysis revealed the induction of CD38, CD54, CD11b, and CD18 markers as early as 3 h after the addition of the inducer in the ATRA-responsive cell lines HL-60 and NB4.

View Article and Find Full Text PDF

Bacterial infections are a serious cause of high morbidity and mortality worldwide. Over the past decades, the drug resistance of bacterial pathogens has been steadily increasing, while the rate of development of new effective antibacterial drugs remains consistently low. The plant kingdom is sometimes called a bottomless well for the search for new antimicrobial therapies.

View Article and Find Full Text PDF
Article Synopsis
  • Oxford Nanopore Technologies' long-read RNA sequencing enables detailed analysis of transcript isoforms and alternative splicing (AS) profiles, allowing researchers to quantify different splice variants and their abundances.
  • The study applied a method known as gene set enrichment analysis to expose the biological pathways affected by AS changes in human liver tissue and cancer cell lines (HepG2 and Huh7).
  • By utilizing a method called the graded tissue specificity index, the research identified specific groups of genes with splice variants unique to liver tissue and the cell lines studied, many of which are significant for understanding cancer development.
View Article and Find Full Text PDF

Cataloging human proteins and evaluation of their expression, cellular localization, functions, and potential medical significance are important tasks for the global proteomic community. At present, localization and functions of protein products for almost half of protein-coding genes remain unknown or poorly understood. Investigation of organelle proteomes is a promising approach to uncovering localization and functions of human proteins.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on N6-methyladenosine (m6A) RNA modifications, highlighting their critical role in regulating RNA functions and cellular processes in HepG2 cells using Oxford Nanopore technology and the m6Anet algorithm.* -
  • Researchers identified 3,968 potential m6A modification sites across 2,851 transcripts linked to 1,396 genes, revealing their involvement in key processes like ubiquitination and transcription regulation, particularly relevant to cancer biology.* -
  • The study emphasizes the need for reproducibility in algorithmic analyses and found a strong correlation between transcriptomic and translatomic levels, contributing to a deeper understanding of m6A modifications' impacts on cellular functions.*
View Article and Find Full Text PDF

The long-read RNA sequencing developed by Oxford Nanopore Technology provides a direct quantification of transcript isoforms. That makes the number of transcript isoforms per gene an intrinsically suitable metric for alternative splicing (AS) profiling in the application to this particular type of RNA sequencing. By using this simple metric and recruiting principal component analysis (PCA) as a tool to visualize the high-dimensional transcriptomic data, we were able to group biospecimens of normal human liver tissue and hepatocyte-derived malignant HepG2 and Huh7 cells into clear clusters in a 2D space.

View Article and Find Full Text PDF

The 2'-deoxyuridine-5'-triphosphates modified with fluorescein (dUTP-Fl) or rhodamine (dUTP-Rh) were tested as bearers of electroactive labels and as proper substrates for polymerases used in polymerase chain reaction (PCR) and isothermal recombinase polymerase amplification (RPA) with the aim of electrochemical detection of double-stranded DNA (dsDNA) amplification products. For this purpose, electrochemical behavior of free fluorescein and rhodamine as well as the modified nucleotides, dUTP-Fl and dUTP-Rh, was studied by cyclic (CV) and square wave (SWV) voltammetry on carbon screen printed electrodes. Both free fluorescein and dUTP-Fl underwent a two-step oxidation at the peak potentials (E) of 0.

View Article and Find Full Text PDF

Downregulation of α5β1 integrin in the SK-Mel-147 human melanoma culture model sharply inhibits the phenotypic manifestations of tumor progression: cell proliferation and clonal activity. This was accompanied by a 2-3-fold increase in the content of SA-β-Gal positive cells thus indicating an increase in the cellular senescence phenotype. These changes were accompanied by a significant increase in the activity of p53 and p21 tumor suppressors and components of the PI3K/Akt/mTOR/p70 signaling pathway.

View Article and Find Full Text PDF

Bacteria are the constant companions of the human body throughout its life and even after its death. The history of a human disease such as cancer and the history of microorganisms, particularly bacteria, are believed to closely intertwined. This review was conceived to highlight the attempts of scientists from ancient times to the present day to discover the relationship between bacteria and the emergence or development of tumors in the human body.

View Article and Find Full Text PDF

Although modern biology is now in the post-genomic era with vastly increased access to high-quality data, the set of human genes with a known function remains far from complete. This is especially true for hundreds of mitochondria-associated genes, which are under-characterized and lack clear functional annotation. However, with the advent of multi-omics profiling methods coupled with systems biology algorithms, the cellular role of many such genes can be elucidated.

View Article and Find Full Text PDF

Studies of induced granulocytic differentiation help to reveal molecular mechanisms of cell maturation. The nuclear proteome represents a rich source of regulatory molecules, including transcription factors (TFs). It is important to have an understanding of molecular perturbations at the early stages of the differentiation processes.

View Article and Find Full Text PDF

CD133 is an extensively studied marker of the most malignant tumor cell population, designated as cancer stem cells (CSCs). However, the function of this glycoprotein and its involvement in cell regulatory cascades are still poorly understood. Here we show a positive correlation between the level of CD133 plasma membrane expression and the proliferative activity of cells of the Caco-2, HT-29, and HUH7 cancer cell lines.

View Article and Find Full Text PDF

The analysis of cytochrome P450 transcripts was carried out by the nanopore sequencing in liver tissue samples of three donors and HepG2 line cells. It has been demonstrated that direct mRNA sequencing with a MinION nanopore sequencer (Oxford Nanopore Technologies) allows one to obtained quantitative profiles for transcripts (and their splice variants) of cytochrome P450 superfamily genes encoding isoforms involved in metabolism of the large (~80%) part of drugs. The splice variant profiles substantially differ for donors.

View Article and Find Full Text PDF

Using human chromosome 18 (Ch18) genes as an example, a PCR analysis of the interindividual variability of gene expression in liver tissue was performed. Although the quantitative profiles of the Ch18 transcriptome, expressed in the number of cDNA copies per single cell, showed a high degree of correlation between donors (Pearson correlation coefficients ranged from 0.963 to 0.

View Article and Find Full Text PDF

Induced granulocytic differentiation of human leukemic cells under all--retinoid acid (ATRA) treatment underlies differentiation therapy of acute myeloid leukemia. Knowing the regulation of this process it is possible to identify potential targets for antileukemic drugs and develop novel approaches to differentiation therapy. In this study, we have performed transcriptomic and proteomic profiling to reveal up- and down-regulated transcripts and proteins during time-course experiments.

View Article and Find Full Text PDF

The chromosome-centric dataset was created by applying several technologies of transcriptome profiling. The described dataset is available at NCBI repository (BioProject ID PRJNA635536). The dataset referred to the same type of tissue, cell lines, transcriptome sequencing technologies, and was accomplished in a period of 8 years (the first data were obtained in 2013 while the last ones - in 2020).

View Article and Find Full Text PDF

Over millions of years of evolution, bacteria have developed complex strategies for intra-and interspecies interactions and competition for ecological niches and resources. Contact-dependent growth inhibition systems (CDI) are designed to realize a direct physical contact of one bacterial cell with other cells in proximity via receptor-mediated toxin delivery. These systems are found in many microorganisms including clinically important human pathogens.

View Article and Find Full Text PDF

Isatin (indole-2,3-dione) is an endogenous regulator, exhibiting a wide range of biological and pharmacological activities. At doses of 100 mg/kg and above, isatin is neuroprotective in different experimental models of neurodegeneration. Good evidence exists that its effects are realized via interaction with numerous isatin-binding proteins identified in the brain and peripheral tissues studied.

View Article and Find Full Text PDF

Selected reaction monitoring (SRM) is a mass spectrometric technique characterized by the exceptionally high selectivity and sensitivity of protein detection. However, even with this technique, the quantitative detection of low- and ultralow-abundance proteins in blood plasma, which is of great importance for the search and verification of novel protein disease markers, is a challenging task due to the immense dynamic range of protein abundance levels. One approach used to overcome this problem is the immunoaffinity enrichment of target proteins for SRM analysis, employing monoclonal antibodies.

View Article and Find Full Text PDF

Using random (combinatorial) DNA-libraries with various degrees of diversity, it was shown that their amplification by polymerase chain reaction in real time resulted in appearance of a maximum on amplification curves. The relative decrease of fluorescence after passing the maximum was directly proportional to the logarithm of the number of oligonucleotide sequence variants in the random DNA-library provided that this number was within in the interval from 1 to 104 and remained practically unaltered when the number of variants was in the interval from 105 to 108. The obtained dependence was used in the course of SELEX to evaluate changes in the diversity of random DNA-libraries from round to round in selection of DNA-aptamers to the recombinant SMAD4 protein.

View Article and Find Full Text PDF