Publications by authors named "Kurbatov I"

Despite their astonishing biological diversity, surprisingly few shared traits connect all or nearly all living organisms. Aging, i.e.

View Article and Find Full Text PDF

The elegance of pre-mRNA splicing mechanisms continues to interest scientists even after over a half century, since the discovery of the fact that coding regions in genes are interrupted by non-coding sequences. The vast majority of human genes have several mRNA variants, coding structurally and functionally different protein isoforms in a tissue-specific manner and with a linkage to specific developmental stages of the organism. Alteration of splicing patterns shifts the balance of functionally distinct proteins in living systems, distorts normal molecular pathways, and may trigger the onset and progression of various pathologies.

View Article and Find Full Text PDF

Obesity is a socially significant disease that is characterized by a disproportionate accumulation of fat. It is also associated with chronic inflammation, cancer, diabetes, and other comorbidities. Investigating biomarkers and pathological processes linked to obesity is especially vital for young individuals, given their increased potential for lifestyle modifications.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on N6-methyladenosine (m6A) RNA modifications, highlighting their critical role in regulating RNA functions and cellular processes in HepG2 cells using Oxford Nanopore technology and the m6Anet algorithm.* -
  • Researchers identified 3,968 potential m6A modification sites across 2,851 transcripts linked to 1,396 genes, revealing their involvement in key processes like ubiquitination and transcription regulation, particularly relevant to cancer biology.* -
  • The study emphasizes the need for reproducibility in algorithmic analyses and found a strong correlation between transcriptomic and translatomic levels, contributing to a deeper understanding of m6A modifications' impacts on cellular functions.*
View Article and Find Full Text PDF

To represent the composition of small molecules circulating in HepG2 cells and the formation of the "core" of characteristic metabolites that often attract researchers' attention, we conducted a meta-analysis of 56 datasets obtained through metabolomic profiling via mass spectrometry and NMR. We highlighted the 288 most commonly studied compounds of diverse chemical nature and analyzed metabolic processes involving these small molecules. Building a complete map of the metabolome of a cell, which encompasses the diversity of possible impacts on it, is a severe challenge for the scientific community, which is faced not only with natural limitations of experimental technologies, but also with the absence of transparent and widely accepted standards for processing and presenting the obtained metabolomic data.

View Article and Find Full Text PDF

Increasing attention has been focused on the study of protein-metabolite interactions (PMI), which play a key role in regulating protein functions and directing an orchestra of cellular processes. The investigation of PMIs is complicated by the fact that many such interactions are extremely short-lived, which requires very high resolution in order to detect them. As in the case of protein-protein interactions, protein-metabolite interactions are still not clearly defined.

View Article and Find Full Text PDF

Although modern biology is now in the post-genomic era with vastly increased access to high-quality data, the set of human genes with a known function remains far from complete. This is especially true for hundreds of mitochondria-associated genes, which are under-characterized and lack clear functional annotation. However, with the advent of multi-omics profiling methods coupled with systems biology algorithms, the cellular role of many such genes can be elucidated.

View Article and Find Full Text PDF

Metabolomics based on two-dimensional gas chromatography coupled with mass spectrometry is making high demands on accuracy at all stages of sample preparation, up to the storage and injection into the analytical system. In high sample flow conditions, good repeatability in peak areas and a list of detectable metabolites is sometimes challenging to obtain. In this research, we successfully obtained good repeatability for the peak areas of MSFTA-derivatives of 29 core blood plasma metabolites.

View Article and Find Full Text PDF

The alphabet of building blocks for RNA molecules is much larger than the standard four nucleotides. The diversity is achieved by the post-transcriptional biochemical modification of these nucleotides into distinct chemical entities that are structurally and functionally different from their unmodified counterparts. Some of these modifications are constituent and critical for RNA functions, while others serve as dynamic markings to regulate the fate of specific RNA molecules.

View Article and Find Full Text PDF

Both biological and technical variations can discredit the reliability of obtained data in omics studies. In this technical note, we investigated the effect of prolonged cultivation of the HepG2 hepatoma cell line on its metabolomic profile. Using the GC × GC-MS approach, we determined the degree of metabolic variability across HepG2 cells cultured in uniform conditions for 0, 5, 10, 15, and 20 days.

View Article and Find Full Text PDF

Metabolomics uses advanced analytical chemistry methods to analyze metabolites in biological samples. The most intensively studied samples are blood and its liquid components: plasma and serum. Armed with advanced equipment and progressive software solutions, the scientific community has shown that small molecules' roles in living systems are not limited to traditional "building blocks" or "just fuel" for cellular energy.

View Article and Find Full Text PDF

Correction for 'Ab initio calculation of energy levels of trivalent lanthanide ions' by Alexandra Ya. Freidzon et al., Phys.

View Article and Find Full Text PDF

The energy levels of Ln3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f-f transitions in Ln3+ complexes using group theory and simple semiempirical models: Russell-Saunders scheme for spin-orbit coupling, ligand-field theory for the splitting of the electronic levels, and Judd-Ofelt parameterization for reproducing the intensity of f-f transitions. Nevertheless, a fully ab initio computational scheme employing no empirical parameterization and suitable for any asymmetrical environment of Ln3+ would be instructive.

View Article and Find Full Text PDF

Spectral properties of terbium(III) nitrate complex with hexamethylphosphoramide have been studied by quantum-chemical methods within the density functional theory and methods of luminescent and X-ray photoelectron spectroscopy. Analysis of the luminescence excitation spectrum of the complex has indicated the absence of intramolecular transfer of electronic excitation energy from the ligand levels to the resonance levels of the rare earth central ion, so luminescence of the complex is associated with the electronic f-f-transitions of Tb ion (transitions D→F, J=3-6). According to quantum-chemical modeling of the excited singlet and triplet levels of the complex, the excitation energy transfer from the ligands onto the central ion does not occur because of the significant difference of energies of their excited states.

View Article and Find Full Text PDF

Daughter sporocysts of Sanguinicola armata are represented by several generations, changes of which goes synchronously with the changes of year seasons. Young individuals beginning the reproductions form exclusively cercariae. The old sporocysts begin to produce sporocysts only.

View Article and Find Full Text PDF