Publications by authors named "Kurakina D"

In this paper, we report on a study regarding the efficiency of the post-operational phototherapy of the tumor bed after resection with both a cold knife and a laser scalpel in laboratory mice with CT-26 tumors. Post-operational processing included photodynamic therapy (PDT) with a topically applied chlorin-based photosensitizer (PS), performed at wavelengths of 405 or 660 nm, with a total dose of 150 J/cm. The selected design of the tumor model yielded zero recurrence in the laser scalpel group and 92% recurrence in the cold knife group without post-processing, confirming the efficiency of the laser scalpel in oncology against the cold knife.

View Article and Find Full Text PDF

We studied grafted tumors obtained by subcutaneous implantation of kidney cancer cells into male white rats. Gold nanorods with a plasmon resonance of about 800 nm were injected intratumorally for photothermal heating. Experimental irradiation of tumors was carried out percutaneously using a near-infrared diode laser.

View Article and Find Full Text PDF

We report on the comparative analysis of self-calibrating and single-slope diffuse reflectance spectroscopy in resistance to different measurement perturbations. We developed an experimental setup for diffuse reflectance spectroscopy (DRS) in a wide VIS-NIR range with a fiber-optic probe equipped with two source and two detection fibers capable of providing measurements employing both single- and dual-slope (self-calibrating) approaches. In order to fit the dynamic range of a spectrometer in the wavelength range of 460-1030 nm, different exposure times have been applied for short (2 mm) and long (4 mm) source-detector distances.

View Article and Find Full Text PDF

The newly developed multimodal imaging system combining raster-scan optoacoustic (OA) microscopy and fluorescence (FL) wide-field imaging was used for characterizing the tumor vascular structure with 38/50 μm axial/transverse resolution and assessment of photosensitizer fluorescence kinetics during treatment with novel theranostic agents. A multifunctional photoactivatable multi-inhibitor liposomal (PMILs) nano platform was engineered here, containing a clinically approved photosensitizer, Benzoporphyrin derivative (BPD) in the bilayer, and topoisomerase I inhibitor, Irinotecan (IRI) in its inner core, for a synergetic therapeutic impact. The optimized PMIL was anionic, with the hydrodynamic diameter of 131.

View Article and Find Full Text PDF

Fluorescence imaging modalities are currently a routine tool for the assessment of marker distribution within biological tissues, including monitoring of fluorescent photosensitizers (PSs) in photodynamic therapy (PDT). Conventional fluorescence imaging techniques provide en-face two-dimensional images, while depth-resolved techniques require complicated tomographic modalities. In this paper, we report on a cost-effective approach for the estimation of fluorophore localization depth based on dual-wavelength probing.

View Article and Find Full Text PDF

Unlabelled: was to assess the capabilities of combined application of dual-wavelength fluorescence visualization and contactless skin thermometry during photodynamic therapy monitoring (PDT) of basal cell cancer.

Materials And Methods: The study was performed at the University Clinic of Privolzhsky Research Medical University (Nizhny Novgorod). Nine clinically, dermatoscopically, and histologically verified foci of basal cell skin cancer were exposed to PDT sessions (wavelength of 662 nm, light dose density of 150 J/cm) with systemic application of chlorin-based photosensitizer Fotoditazin.

View Article and Find Full Text PDF

The goal of this study is a comparative analysis of the efficiency of the PDT protocols for CT26 tumor model treatment in Balb/c mice employing red and blue light with both topical and intravenous administration of chlorin-based photosensitizers (PSs). The considered protocols include the doses of 250 J/cm delivered at 660 nm, 200 J/cm delivered at 405 nm, and 250 J/cm delivered at both wavelengths with equal energy density contribution. Dual-wavelength fluorescence imaging was employed to estimate both photobleaching efficiency, typical photobleaching rates and the procedure impact depth, while optical coherence tomography with angiography modality (OCT-A) was employed to monitor the tumor vasculature response for up to 7 days after the procedure with subsequent histology inspection.

View Article and Find Full Text PDF
Article Synopsis
  • Modern optical bioimaging trends seek innovative nanoproducts that offer both high image contrast and effective treatment capabilities.
  • Silicon nanoparticles, created through picosecond laser ablation of porous silicon films and nanowire arrays in water and ethanol, show promise as contrasting agents for imaging techniques like fluorescence and optical coherence tomography.
  • These nanoparticles, measuring under 100 nm and exhibiting crystalline phases, demonstrate effective fluorescence and light scattering, paving the way for their application in biophotonics, as evidenced by preliminary optical imaging experiments.
View Article and Find Full Text PDF

Cerebrovascular imaging of rodents is one of the trending applications of optoacoustics aimed at studying brain activity and pathology. Imaging of deep brain structures is often hindered by sub-optimal arrangement of the light delivery and acoustic detection systems. In our work we revisit the physics behind opto-acoustic signal generation for theoretical evaluation of optimal laser wavelengths to perform cerebrovascular optoacoustic angiography of rodents beyond the penetration barriers imposed by light diffusion in highly scattering and absorbing brain tissues.

View Article and Find Full Text PDF

Two pronounced absorption peaks in blue and red ranges of the chlorin-based photosensitizer (PS) absorption spectrum provide additional benefits in photodynamic therapy (PDT) performance. Differing optical properties of biological tissues in these ranges allow for both dual-wavelength diagnostics and PDT performance. We provide a comparative analysis of different PDT regimes performed with blue and red lights and their combination, with doses varying from 50 to 150  J  /  cm.

View Article and Find Full Text PDF

We developed a compact, hand-held hyperspectral imaging system for 2D neural network-based visualization of skin chromophores and blood oxygenation. State-of-the-art micro-optic multichannel matrix sensor combined with the tunable Fabry-Perot micro interferometer enables a portable diagnostic device sensitive to the changes of the oxygen saturation as well as the variations of blood volume fraction of human skin. Generalized object-oriented Monte Carlo model is used extensively for the training of an artificial neural network utilized for the hyperspectral image processing.

View Article and Find Full Text PDF

Modern radiation therapy of malignant tumors requires careful selection of conditions that can improve the effectiveness of the treatment. The study of the dynamics and mechanisms of tumor reoxygenation after radiation therapy makes it possible to select the regimens for optimizing the ongoing treatment. Diffuse optical spectroscopy (DOS) is among the methods used for non-invasive assessment of tissue oxygenation.

View Article and Find Full Text PDF