We have studied the proximity effect in an SF1S1F2s superconducting spin valve consisting of a massive superconducting electrode (S) and a multilayer structure formed by thin ferromagnetic (F1,2) and superconducting (S1, s) layers. Within the framework of the Usadel equations, we have shown that changing the mutual orientation of the magnetization vectors of the F1,2 layers from parallel to antiparallel serves to trigger superconductivity in the outer thin s-film. We studied the changes in the pair potential in the outer s-film and found the regions of parameters with a significant spin-valve effect.
View Article and Find Full Text PDFThe imitative modelling of processes in the brain of living beings is an ambitious task. However, advances in the complexity of existing hardware brain models are limited by their low speed and high energy consumption. A superconducting circuit with Josephson junctions closely mimics the neuronal membrane with channels involved in the operation of the sodium-potassium pump.
View Article and Find Full Text PDFWe have theoretically studied the transport properties of the SIsNSOF structure consisting of thick (S) and thin (s) films of superconductor, an insulator layer (I), a thin film of normal metal with spin-orbit interaction (SOI) (NSO), and a monodomain ferromagnetic layer (F). The interplay between superconductivity, ferromagnetism, and spin-orbit interaction allows the critical current of this Josephson junction to be smoothly varied over a wide range by rotating the magnetization direction in the single F-layer. We have studied the amplitude of the spin valve effect and found the optimal ranges of parameters.
View Article and Find Full Text PDFIn this paper, we present a theoretical study of electronic transport in planar Josephson Superconductor-Normal Metal-Superconductor (SN-N-NS) bridges with arbitrary transparency of the SN interfaces. We formulate and solve the two-dimensional problem of finding the spatial distribution of the supercurrent in the SN electrodes. This allows us to determine the scale of the weak coupling region in the SN-N-NS bridges, i.
View Article and Find Full Text PDFWe theoretically investigated the proximity effect in SNSOF and SF'F structures consisting of a superconductor (S), a normal metal (NSO), and ferromagnetic (F',F) thin films with spin-orbit interaction (SOI) in the NSO layer. We show that a normal layer with spin-orbit interaction effectively suppresses triplet correlations generated in a ferromagnetic layer. Due to this effect, the critical temperature of the superconducting layer in the SNSOF multilayer turns out to be higher than in a similar multilayer without spin-orbit interaction in the N layer.
View Article and Find Full Text PDFMade of a thin non-superconducting metal (N) sandwiched by two superconductors (S), SNS Josephson junctions enable novel quantum functionalities by mixing up the intrinsic electronic properties of N with the superconducting correlations induced from S by proximity. Electronic properties of these devices are governed by Andreev quasiparticles (Andreev, A. 1965, 20, 1490) which are absent in conventional SIS junctions whose insulating barrier (I) between the two S electrodes owns no electronic states.
View Article and Find Full Text PDFThin films of diluted magnetic alloys are widely used in superconducting spintronics devices. Most studies rely on transport measurements and assume homogeneous magnetic layers. Here we examine on a local scale the electronic properties of the well-known two-layer superconductor/ferromagnet structure Nb/CuNi.
View Article and Find Full Text PDFThe hardware implementation of signal microprocessors based on superconducting technologies seems relevant for a number of niche tasks where performance and energy efficiency are critically important. In this paper, we consider the basic elements for superconducting neural networks on radial basis functions. We examine the static and dynamic activation functions of the proposed neuron.
View Article and Find Full Text PDFHigh-performance modeling of neurophysiological processes is an urgent task that requires new approaches to information processing. In this context, two- and three-junction superconducting quantum interferometers with Josephson weak links based on gold nanowires are fabricated and investigated experimentally. The studied cells are proposed for the implementation of bio-inspired neurons-high-performance, energy-efficient, and compact elements of neuromorphic processor.
View Article and Find Full Text PDFUnlike conventional planar Josephson junctions, nanowire-based devices have a bridge geometry with a peculiar coupling to environment that can favor non-equilibrium electronic phenomena. Here we measure the influence of the electron bath overheating on critical current of several bridge-like junctions built on a single Au-nanowire. Using the Usadel theory and applying the two-fluid description for the normal and superconducting components of the flowing currents, we reveal and explain the mutual influence of the neighbouring junctions on their characteristics through various processes of the electron gas overheating.
View Article and Find Full Text PDFThe critical step for future quantum industry demands realization of efficient information exchange between different-platform hybrid systems that can harvest advantages of distinct platforms. The major restraining factor for the progress in certain hybrids is weak coupling strength between the elemental particles. In particular, this restriction impedes a promising field of hybrid magnonics.
View Article and Find Full Text PDFWe examine the influence of superconductivity on the magneto-transport properties of a ferromagnetic Ni nanowire connected to Nb electrodes. We show experimentally and confirm theoretically that the Nb/Ni interface plays an essential role in the electron transport through the device. Just below the superconducting transition, a strong inverse proximity effect from the nanowire suppresses superconducting correlations at Nb/Ni interfaces, resulting in a conventional anisotropic magneto-resistive response.
View Article and Find Full Text PDFWe present a study of magnetic structures with controllable effective exchange energy for Josephson switches and memory applications. As a basis for a weak link we propose to use a periodic structure composed of ferromagnetic (F) layers spaced by thin superconductors (s). Our calculations based on the Usadel equations show that switching from parallel (P) to antiparallel (AP) alignment of neighboring F layers can lead to a significant enhancement of the critical current through the junction.
View Article and Find Full Text PDFWe study analytically and numerically the influence of the quasiparticle charge imbalance on the dynamics of the asymmetric Josephson stack formed by two inequivalent junctions: the fast capacitive junction JJ and slow non-capacitive junction JJ . We find, that the switching of the fast junction into resistive state leads to significant increase of the effective critical current of the slow junction. At the same time, the initial switching of the slow junction may either increase or decrease the effective critical current of the fast junction, depending on ratio of their resistances and the value of the capacitance.
View Article and Find Full Text PDFVortices in quantum condensates exist owing to a macroscopic phase coherence. Here we show, both experimentally and theoretically, that a quantum vortex with a well-defined core can exist in a rather thick normal metal, proximized with a superconductor. Using scanning tunneling spectroscopy we reveal a proximity vortex lattice at the surface of 50 nm-thick Cu-layer deposited on Nb.
View Article and Find Full Text PDFThe predictions of Moore's law are considered by experts to be valid until 2020 giving rise to "post-Moore's" technologies afterwards. Energy efficiency is one of the major challenges in high-performance computing that should be answered. Superconductor digital technology is a promising post-Moore's alternative for the development of supercomputers.
View Article and Find Full Text PDFBackground: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature T c, i.e.
View Article and Find Full Text PDFWe calculate the current-phase relation of a planar Josephson junction with a ferromagnetic weak link located on top of a thin normal metal film. Following experimental observations we assume transparent superconductor-ferromagnet interfaces. This provides the best interlayer coupling and a low suppression of the superconducting correlations penetrating from the superconducting electrodes into the ferromagnetic layer.
View Article and Find Full Text PDFWe have measured the current-phase relationship I(varphi) of symmetric 45 degrees YBa2Cu3O7-x grain boundary Josephson junctions. Substantial deviations of the Josephson current from conventional tunnel-junction behavior have been observed: (i) The critical current exhibits, as a function of temperature T, a local minimum at a temperature T*. (ii) At T approximately T*, the first harmonic of I(phi) changes sign.
View Article and Find Full Text PDFPhys Rev B Condens Matter
January 1996
Phys Rev B Condens Matter
June 1995