Publications by authors named "Kuo-Peing Liu"

Serotonergic 5-HT(1A) receptor signaling leading to nuclear factor-kappaB (NF-kappaB) activation appears to be critical for cell survival. Adenylyl cyclase and protein kinase A (AC/PKA) are effectors of the 5-HT(1A) receptor that are inhibited by Galpha(i) subunits. Conversely, Gbetagamma(i) subunits downstream from the 5-HT(1A) receptor participate in the activation of extracellular signal-regulated kinases (ERK1/2), phosphatidylinositol 3-kinase (PI3K), Akt, and NF-kappaB.

View Article and Find Full Text PDF

Antagonist 5-HT(1A) PET ligands are available, but an agonist ligand would give more information about signal transduction capacity. Synthesis and in vivo evaluation of [O-methyl-(11)C]2-{4-[4-(7-methoxynaphthalen-1-yl)piperazin-1-yl]butyl}-4-methyl-2H-[1,2,4]triazine-3,5-dione (10), a potential high affinity (K(i) = 1.36 nM) 5-HT(1A) agonist PET tracer is described.

View Article and Find Full Text PDF

To investigate the functional consequences of cross-talk between multiple effectors of serotonin (5-HT) 1A receptor, we employed transfected Chinese hamster ovary cells. Activation of 5-HT 1A receptor stimulated extracellular signal-regulated kinase (ERK)1/2, Akt and nuclear transcription factor-kappaB (NF-kappaB). Stimulation of cells with 5-HT 1A receptor agonist induced a rapid but transient ERK1/2 phosphorylation followed by increased phosphorylation of Akt.

View Article and Find Full Text PDF

Mice lacking dopamine D2 receptors exhibit a significantly decreased agonist-promoted forebrain neocortical D1 receptor activation that occurs without changes in D1 receptor expression levels. This raises the possibility that, in brains of D2 mutants, a substantial portion of D1 receptors are uncoupled from their G protein, a phenomenon known as receptor desensitization. To test this, we examined D1-agonist-stimulated [35S]GTPgammaS binding (in the presence and absence of protein phosphatase inhibitors) and cAMP production (in the presence and absence of pertussis toxin) in forebrain neocortical tissues of wild-type mice and D2-receptor mutants.

View Article and Find Full Text PDF

Elevation of extracellular Ca2+ (increase[Ca2+]e) stimulates the Ca2+ receptor (CaR) to induce secretion of 5-hydroxytryptamine (5-HT) from the calcium-sensing parafollicular (PF) cells. The CaR has been reported to couple to Galpha(q) with subsequent activation of protein kinase C-gamma (PKCgamma). We have identified a parallel transduction pathway in primary cultures of sheep PF cells by using a combinatorial approach in which we expressed adenoviral-encoded dominant-negative signaling proteins and performed in vitro kinase assays.

View Article and Find Full Text PDF

Trapping of weak bases was utilized to evaluate stimulus-induced changes in the internal pH of the secretory vesicles of chromaffin cells and enteric neurons. The internal acidity of chromaffin vesicles was increased by the nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP; in vivo and in vitro) and by high K+ (in vitro); and in enteric nerve terminals by exposure to veratridine or a plasmalemmal [Ca2+]o receptor agonist (Gd3+). Stimulation-induced acidification of chromaffin vesicles was [Ca2+]o-dependent and blocked by agents that inhibit the vacuolar proton pump (vH+-ATPase) or flux through Cl- channels.

View Article and Find Full Text PDF