The MM4 force field has been extended to include aliphatic amines. About 20 amines have been examined to obtain a set of useful molecular mechanics parameters for this class. The vibrational spectra of seven amines (172 frequencies) calculated by MM4 have an overall rms error of 27 cm(-1), compared with corresponding MM4 value of 24 cm(-1) for alkanes.
View Article and Find Full Text PDFCycloundecane (1) was shown to exist at -183.1 degrees C as a mixture of the [12323] (approximately 59%) and [335] (approximately 41%) conformations. Populations were determined from the (13)C NMR spectrum, and assignments were based on the (13)C spectra, calculated free energies and chemical shifts, and information from the literature, including X-ray studies of solid derivatives and calculated barriers.
View Article and Find Full Text PDFA molecular mechanics study of small saturated hydrocarbons (up to C-6) substituted by up to six fluorines has been carried out with the MM4 force field. A parameter set has been developed for use in the calculation of bond lengths, bond angles, torsion angles, conformational energies, barriers to rotation, dipole moments, moments of inertia, and vibrational frequencies for these compounds. The results are mostly in fair to good agreement with experiment and ab initio calculations.
View Article and Find Full Text PDFThe rotational barrier for a methyl group at the end of an anomeric system is sometimes lower than we might have anticipated. Thus, in the trans-trans conformation of dimethoxymethane, the barrier to methyl rotation is calculated (B3LYP/6-311++G(2d,2p)) to be 2.22 kcal/mol, just slightly smaller than the corresponding barrier to rotation of the methyl group in methyl propyl ether of 2.
View Article and Find Full Text PDFJ Comput Chem
September 2003
Ab initio calculations [B3LYP/6-311++G(2d,2p)] have been carried out on 84 conformations of 12 different sugars (hexoses), in both pyranose and furanose forms, with the idea of generating a data base for carbohydrate structural energies that may be used for developing the predictive value of molecular mechanics calculations for carbohydrates. The average value for the apparent gas phase anomeric effect for a series of 31 pairs of pyranose conformations was found to be 1.83 kcal/mol (vs.
View Article and Find Full Text PDFEthylene glycol, its dimethyl ether, and some related compounds have been studied using the MM4 molecular mechanics force field. The MM4 calculated structural and energetic results have been brought into satisfactory agreement with a considerable number of experimental data and MP2/6-311++G(2d,2p) ab initio calculations. The heats of formation of these compounds are also well calculated.
View Article and Find Full Text PDFThe anomeric effect has been studied for a variety of compounds using the MM4 force field, and also using MP2/6-311++G(2d,2p) ab initio calculations and experimental data for reference purposes. Geometries and energies, including conformational, rotational barriers, and heats of formation were examined. Overall, the agreement of MM4 with the experimental and ab initio data is good, and significantly better than the agreement obtained with the MM3 force field.
View Article and Find Full Text PDFSimple alcohols and ethers have been studied with the MM4 force field. The structures of 13 molecules have been well fit using the MM4 force field. Moments of inertia have been fit with rms percentage errors as indicated: 18 moments for ethers, 0.
View Article and Find Full Text PDFThe MM3 force field has been extended to deal with the lithium amide molecules that are widely used as efficient catalysts for stereoselective asymmetric synthesis. The MM3 force field parameters have been determined on the basis of the ab initio MP2/6-31G* and/or DFT (B3LYP/6-31G*, B3-PW91/6-31G*) geometry optimization calculations. To evaluate the electronic interactions specific to the lithium amides derived from the diamine molecules properly, the Lewis bonding potential term for the interaction between the lithium atom and the nonbonded adjacent electronegative atom such as nitrogen was introduced into the MM3 force field.
View Article and Find Full Text PDFNeutral in-plane tris-homoaromaticity is evaluated in tris(bismethano)benzene (15) and modifications of this parent structure in which the pi-orbitals might interact in the plane established by the unsaturated carbon atoms (in-plane conjugation). On the basis of magnetic susceptibility exaltation, nucleus-independent shift (NICS), and aromatic stabilization energy (ASE, evaluated via homodesmotic and isodesmic equations using B3LYP/6-311+G + ZPVE energies, as well as by MM3 and MM4 force field computations), we identified triene 17, a triply bridged analogue of 15, as the system where homoaromaticity is most effective. The NICS(total) in the center of 17 is -30.
View Article and Find Full Text PDF