Housekeeping protein-coding genes are stably expressed genes in cells and tissues that are thought to be engaged in fundamental cellular biological functions. They are often utilized as normalization references in molecular biology research and are especially important in integrated bioinformatic investigations. Prior studies have examined human housekeeping protein-coding genes by analyzing various gene expression datasets.
View Article and Find Full Text PDFRecently, a new reference transcript dataset [Matched Annotation from the NCBI and EMBL-EBI (MANE) select] was released by NCBI and EMBL-EBI to make available a new unified representative transcript for human protein-coding genes. While the main purpose of MANE project is to provide a harmonized gene and transcript information standard, there is no explicit tissue expression information about these MANE select transcripts. In this report, we tried to provide useful expression profiles of MANE select transcripts in various normal human tissues to allow further interrogation of their molecular modulations and functional significance.
View Article and Find Full Text PDFThe discovery and quantification of mRNA transcripts using short-read next-generation sequencing (NGS) data is a complicated task. There are far more alternative mRNA transcripts expressed by human genes than can be identified from NGS transcriptome data and various bioinformatic pipelines, while the numbers of annotated human protein-coding genes has gradually declined in recent years. It is essential to learn more about the thorough tissue expression profiles of alternative transcripts in order to obtain their molecular modulations and actual functional significance.
View Article and Find Full Text PDFWith considerable accumulation of RNA-Seq transcriptome data, we have extended our understanding about protein-coding gene transcript compositions. However, alternatively compounded patterns of human protein-coding gene transcripts would complicate gene expression data processing and interpretation. It is essential to exhaustively interrogate complex mRNA isoforms of protein-coding genes with an unified data resource.
View Article and Find Full Text PDFInfluenza viruses, like other viruses, rely on host factors to support their life cycle as viral proteins usually "hijack," or collaborate with, cellular proteins to execute their functions. Identification and understanding of these factors can increase the knowledge of molecular mechanisms manipulated by the viruses and facilitate development of antiviral drugs. To this end, we developed a unique genome-wide pooled shRNA screen to search for cellular factors important for influenza A virus (IAV) replication.
View Article and Find Full Text PDF