Publications by authors named "Kuo-Chu Lai"

Drug-induced delayed hypersensitivity reactions (DHRs) is still a clinical and healthcare burden in every country. Increasing reports of DHRs have caught our attention to explore the genetic relationship, especially life-threatening severe cutaneous adverse drug reactions (SCARs), including acute generalized exanthematous pustulosis (AGEP), drug reactions with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN). In recent years, many studies have investigated the immune mechanism and genetic markers of DHRs.

View Article and Find Full Text PDF

(1) Background: Cancer stem cells (CSCs) are a small cell population associated with chemoresistance, metastasis and increased mortality rate in oral cancer. Interferon-induced proteins with tetratricopeptide repeats 2 (IFIT2) depletion results in epithelial to mesenchymal transition, invasion, metastasis, and chemoresistance in oral cancer. To date, no study has demonstrated the effect of IFIT2 depletion on the CSC-like phenotype in oral cancer cells.

View Article and Find Full Text PDF

Background: Interferon-induced protein with tetratricopeptide repeat 2 (IFIT2) is a reported metastasis suppressor in oral squamous cell carcinoma (OSCC). Metastases and cachexia may coexist. The effect of cancer metastasis on cancer cachexia is largely unknown.

View Article and Find Full Text PDF

Background/aim: Quinazolinone is a privileged chemical structure employed for targeting various types of cancer. This study aimed to demonstrate the antitumor activity of synthesized 6,7-disubstituted-2-(3-fluorophenyl) quinazolines (HoLu-11 to HoLu-14).

Materials And Methods: The cytotoxicity was assessed by the sulforhodamine B (SRB) assay.

View Article and Find Full Text PDF

Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) is a member of the interferon-stimulated gene family that contains tetratricopeptide repeats (TPRs), which mediate protein-protein interactions in various biological systems. We previously showed the depletion of IFIT2 enhanced cell migration and metastatic activity in oral squamous cell carcinoma (OSCC) cells via the activation of atypical PKC signaling. In this study, we found that IFIT2-knockdown cells displayed higher resistance to 5-fluorouracil (5-FU) than control cells.

View Article and Find Full Text PDF

A series of 1,2-bis(hydroxymethyl)pyrrolo[1,2-f]phenanthridine derivatives and their alkyl (ethyl and isopropyl) carbamates and 12,13-bis(hydroxymethyl)-9,14-dihydro-dibenzo[f,h]pyrrolo[1,2-b]isoquinoline derivatives were synthesized for antiproliferative evaluation. The preliminary antitumour studies revealed that these two types of bis(hydroxymethyl) derivatives showed significant antitumour activities and were able to inhibit the growth of various human tumour cell lines in vitro. Several of the derivatives were demonstrated to cause DNA interstrand cross-links by an alkaline agarose gel shifting assay.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common causes of death in Taiwan. Previous studies showed that (AC) can treat poisoning, diarrhea, and various types of cancer. Therefore, we purified a novel ubiquinone derivative, AC009, and investigated its antitumor effects.

View Article and Find Full Text PDF

Oroxylin A (Oro-A), the main bioactive flavonoid extracted from , has been reported to inhibit migration in various human cancer cell models. In this study, we further explored the anti-migration effects of Oro-A on oral squamous cell carcinoma (OSCC) cells and investigated the underlying mechanisms. A 24-h (short-term) exposure of OSCC cells to non-cytotoxic concentrations (5⁻20 μM) of Oro-A significantly suppressed cell migration according to a wound-healing assay.

View Article and Find Full Text PDF

Aberrant DNA methylation is a potential mechanism underlying the development of colorectal cancer (CRC). Thus, identification of prognostic DNA methylation markers and understanding the related molecular functions may offer a new perspective on CRC pathogenesis. To that end, we explored DNA methylation profile changes in CRC subtypes based on the microsatellite instability (MSI) status through genome-wide DNA methylation profiling analysis.

View Article and Find Full Text PDF

Our previous study demonstrated that the depletion of interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) promoted metastasis and was associated with a poor prognosis in patients with oral squamous cell carcinoma (OSCC). Our current study explores the major downstream signaling involved in IFIT2 depletion-induced OSCC metastasis. To this end, we used two cell lines (designated sh-control-xeno and sh-IFIT2-xeno) derived from human OSCC xenografts expressing sh-control and sh-IFIT2, respectively, and one metastatic OSCC subline (sh-IFIT2-meta) from an IFIT2-depleted metastatic tumor.

View Article and Find Full Text PDF

Heat shock protein 70 (HSP70) has been shown to be a substrate of Polo-like kinase 1 (PLK1), and it prevents cells arrested in mitosis by arsenic trioxide (ATO) from dying. Here, we report that HSP70 participates in ATO-induced spindle elongation, which interferes with mitosis progression. Our results demonstrate that HSP70 and PLK1 colocalize at the centrosome in ATO-arrested mitotic cells.

View Article and Find Full Text PDF

Betel quit (BQ) chewing is a popular habit, especially in southern and southeastern Asia. Areca nut extracts (ANE), the major components of BQ, have been documented to induce reactive oxygen species, and consequently to cause genetic damage. ANE usage is tightly linked to oral cancer; however, the details of the molecular mechanism that results in carcinogenesis remain unclear.

View Article and Find Full Text PDF

The function of the IFN-stimulated gene family protein, IFN-induced protein with tetratricopeptide repeats 2 (IFIT2), is poorly understood. Here, we report that IFIT2 colocalizes with cytokeratin 18 in oral squamous cell carcinoma (OSCC) cells. Treatment of OSCC cells with IFN-beta significantly increased the expression of IFIT2 and remarkably inhibited cell migration.

View Article and Find Full Text PDF

Chewing betel quid (BQ) is a popular habit worldwide. A causal association between BQ chewing and oral cancer has been well documented. Emerging evidence indicates that sustained exposure to stress induces epigenetic reprogramming of some mammalian cells and increases the mutation rate to accelerate adaptation to stressful environments.

View Article and Find Full Text PDF