Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl.
View Article and Find Full Text PDFIndium is a potentially toxic element that could enter human food chains, including soil-rice systems. The submerged environment in rice paddy soil results in temporal and spatial variations in the chemical properties of the rice rhizosphere and bulk soils, expected to cause changes in indium's chemical speciation and consequently affect its bioavailability. Therefore, this study aimed to investigate indium speciation and fractionation in soils at different periods of rice growth under continuous submergence using X-ray absorption spectroscopy and a sequential extraction method.
View Article and Find Full Text PDFGallium (Ga) is widely used in high-tech industries and is an emerging contaminant in the environment. This study aimed to determine Ga speciation in soils and Ga accumulation in rice plants (Oryza sativa L.) grown in three Ga-contaminated soils.
View Article and Find Full Text PDFPlant Cell Environ
October 2021
Zn deficiency is the most common micronutrient deficit in rice but Zn is also a widespread industrial pollutant. Zn deficiency responses in rice are well documented, but comparative responses to Zn deficiency and excess have not been reported. Therefore, we compared the physiological, transcriptional and biochemical properties of rice subjected to Zn starvation or excess at early and later treatment stages.
View Article and Find Full Text PDFIron (Fe) homeostasis in plants is controlled by both transcription factors (TFs) and chromatin remodeling through histone modification. To date, few studies have reported the existence of histone modification in maintaining the Fe-deficiency response. However, the reports that do exist shed light on various histone modifications, but knowledge of the activation mark in Fe-deficiency response is lacking.
View Article and Find Full Text PDFThe increasing use of indium in high-tech industries has inevitably caused its release into the environment. However, knowledge of its environmental fate has been very limited so far. This study investigates the indium uptake and accumulation by two staple crops, rice ( L.
View Article and Find Full Text PDFIron (Fe) transport and utilization are controlled by Fe-dependent transcriptional cascades. Many genes participate in these processes, transcriptionally controlled by Fe-status. Thorough knowledge of the translational check-points is lacking.
View Article and Find Full Text PDFThe use of indium in semiconductor products has increased markedly in recent years. The release of indium into the ecosystem is inevitable. Under such circumstances, effective and accurate assessment of indium risk is important.
View Article and Find Full Text PDFOne of the goals of biofortification is to generate iron-enriched crops to combat growth and developmental defects especially iron (Fe) deficiency anaemia. Fe-fortification of food is challenging because soluble Fe is unstable and insoluble Fe is nonbioavailable. Genetic engineering is an alternative approach for Fe-biofortification, but so far strategies to increase Fe content have only encompassed a few genes with limited success.
View Article and Find Full Text PDFOrganisms need to balance sufficient uptake of iron (Fe) with possible toxicity. In plant roots, a regulon of uptake genes is transcriptionally activated under Fe deficiency, but it is unknown how this response is inactivated when Fe becomes available. Here we describe the function of 2 partially redundant E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2, in and provide evidence that they target the transcription factor FIT, a key regulator of Fe uptake, for degradation.
View Article and Find Full Text PDFPlant growth requires optimal levels of iron (Fe). Fe is used for energy production, numerous enzymatic processes, and is indispensable for cellular metabolism. Recent studies have established the mechanism involved in Fe uptake and transport.
View Article and Find Full Text PDFIron (Fe) is essential for plant growth and development. Knowledge of Fe signaling, from the beginning of perception to activation of the uptake process, is critical for crop improvement. Here, by using chemical screening, we identified a small molecule 3-amino-N-(3-methylphenyl)thieno[2,3-b]pyridine-2-carboxamide named R7 ('R' denoting repressor of IRON-REGULATED TRANSPORTER 1), that modulates Fe homeostasis of Arabidopsis.
View Article and Find Full Text PDFPlants acquire mineral nutrients mostly through the rhizosphere; they secrete a large number of metabolites into the rhizosphere to regulate nutrient availability and to detoxify undesirable metal pollutants in soils. The secreted metabolites are inorganic ions, gaseous molecules, and mainly carbon-based compounds. This review focuses on the mechanisms and regulation of low-molecular-weight organic-compound exudation in terms of metal acquisition.
View Article and Find Full Text PDFCopper ions play an important role in ethylene receptor biogenesis and proper function. The copper transporter RESPONSIVE-TO-ANTAGONIST1 (RAN1) is essential for copper ion transport in Arabidopsis thaliana. However it is still unclear how copper ions are delivered to RAN1 and how copper ions affect ethylene receptors.
View Article and Find Full Text PDFEnviron Sci Technol
February 2017
Although gallium (Ga) is a rare element, it is widely used in semiconductor devices. Ga contamination of the environment has been found in semiconductor-producing countries. Here, the physiological and molecular impacts of Ga in the model plant Arabidopsis thaliana were investigated in medium culture.
View Article and Find Full Text PDFElectrospray ionization-mass spectrometry (ESI-MS) is used to analyze metal species in a variety of samples. Here, we describe an application for identifying metal species by tandem mass spectrometry (ESI-MS/MS) with the release of free metals from the corresponding metal-ligand complexes. The MS/MS data were used to elucidate the possible fragmentation pathways of different metal-deoxymugineic acid (-DMA) and metal-nicotianamine (-NA) complexes and select the product ions with highest abundance that may be useful for quantitative multiple reaction monitoring.
View Article and Find Full Text PDFTo acquire appropriate iron (Fe), vascular plants have developed two unique strategies, the reduction-based strategy I of nongraminaceous plants for Fe(2+) and the chelation-based strategy II of graminaceous plants for Fe(3+) . However, the mechanism of Fe uptake in bryophytes, the earliest diverging branch of land plants and dominant in gametophyte generation is less clear. Fe isotope fractionation analysis demonstrated that the liverwort Marchantia polymorpha uses reduction-based Fe acquisition.
View Article and Find Full Text PDFIron (Fe) deficiency is a common agricultural problem that affects both the productivity and nutritional quality of plants. Thus, identifying the key factors involved in the tolerance of Fe deficiency is important. In the present study, the zir1 mutant, which is glutathione deficient, was found to be more sensitive to Fe deficiency than the wild type, and grew poorly in alkaline soil.
View Article and Find Full Text PDFHyperaccumulators tolerate and accumulate extraordinarily high concentrations of heavy metals. Content of the metal chelator nicotianamine (NA) in the root of zinc hyperaccumulator Arabidopsis halleri is elevated compared with nonhyperaccumulators, a trait that is considered to be one of the markers of a hyperaccumulator. Using metabolite-profiling analysis of root secretions, we found that excess zinc treatment induced secretion of NA in A.
View Article and Find Full Text PDFYellow stripe-like1 (YSL1) and YSL3 are involved in iron (Fe) and copper (Cu) translocation. Previously, we reported that upregulation of YSL1 and YSL3 under excess Cu caused high accumulation of Cu in the siz1 mutant, impaired in small ubiquitin-like modifier (SUMO) E3 ligase. Interestingly, the siz1 mutant contains high levels of salicylic acid (SA), involved in plant defense against biotrophic pathogens.
View Article and Find Full Text PDFFe is an essential micronutrient for plant growth and development; plants have developed sophisticated strategies to acquire ferric Fe from the soil. Nongraminaceous plants acquire Fe by a reduction-based mechanism, and graminaceous plants use a chelation-based mechanism. In Arabidopsis thaliana, which uses the reduction-based method, iron-regulated transporter1 (IRT1) functions as the most important transporter for ferrous Fe uptake.
View Article and Find Full Text PDFZinc (Zn) is an essential plant micronutrient but is toxic in excess. To cope with excess Zn, plant species possess a strict metal homeostasis mechanism. The Zn hyperaccumulator Arabidopsis halleri has developed various adaptive mechanisms involving uptake, chelation, translocation and sequestration of Zn.
View Article and Find Full Text PDFOne striking feature of viruses with RNA genomes is the modification of the host membrane structure during early infection. This process requires both virus- and host-encoded proteins; however, the host factors involved and their role in this process remain largely unknown. On infection with Tobacco mosaic virus (TMV), a positive-strand RNA virus, the filamentous and tubular endoplasmic reticulum (ER) converts to aggregations at the early stage and returns to filamentous at the late infectious stage, termed the ER transition.
View Article and Find Full Text PDF