Publications by authors named "Kuo Kan Liang"

The evolution of gold nanoparticle (Au NP) clusters in living cells are studied by using sectional dark-field optical microscopy and chromatic analysis approach. During endocytosis, Au NP clusters undergo fantastic color changes, from green to yellow-orange due to the plasmonic coupling effect. Analysis of brightness/hue values of the dark-field images helps estimate the numbers of Au NPs in the clusters.

View Article and Find Full Text PDF

K+ are selectively coordinated in the selectivity filter and concerted K+ and water movements in this region ensure high conduction rates in K+ channels. In channels with long pores many K+ binding sites are located intracellular to the selectivity filter (inner vestibule), but their contribution to permeation has not been well studied. We investigated this phenomenon by slowing the ion permeation process via blocking inwardly rectifying Kir2.

View Article and Find Full Text PDF

The performance of an analytical expression for algorithmic decoherence time is investigated for non-Born-Oppenheimer molecular dynamics. There are two terms in the function that represents the dependence of the decoherence time on the system parameters; one represents decoherence due to the quantum time-energy uncertainty principle and the other represents a back reaction from the decoherent force on the classical trajectory. We particularly examine the question of whether the first term should dominate.

View Article and Find Full Text PDF

A molecular theory of time-resolved sum-frequency generation (SFG) has been developed. The theoretical framework is constructed using the coupled-oscillator model in the adiabatic approximation. This theory can treat not only the vibrational spectroscopy but also vibrational dynamics.

View Article and Find Full Text PDF

In this paper we shall show how to calculate the single vibronic-level electron-transfer rate constant, which will be compared with the thermal averaged one. To apply the theoretical results to the dye-sensitized solar cells, we use a simple model to describe how we model the final state of the electron-transfer process. Numerical calculations will be performed to demonstrate the theoretical results.

View Article and Find Full Text PDF

In studying ultrafast electron transfer from a dye molecule to a nanosized semiconductor particle, pump-probe experiments are commonly used. In this system the electron transfer (ET) rate is faster than vibrational relaxation so that the ET rate should be described by a single-level rate constant and the probing signal (often in the form of time-resolved spectra) contains the contribution from the dynamics of both population and coherence (i.e.

View Article and Find Full Text PDF

A statistical-mechanical treatment of the solubilization in micelle is presented in combination with molecular simulation. The micellar solution is viewed as an inhomogeneous and partially finite, mixed solvent system, and the method of energy representation is employed to evaluate the free-energy change for insertion of a solute into the micelle inside with a realistic set of potential functions. Methane, benzene, and ethylbenzene are adopted as model hydrophobic solutes to analyze the solubilization in sodium dodecyl sulfate micelle.

View Article and Find Full Text PDF