Background: A novel translational pharmacology investigation was conducted by combining an in vitro efficacy target with mucosal tissue pharmacokinetic (PK) data and mathematical modeling to determine the number of doses required for effective human immunodeficiency virus (HIV) preexposure prophylaxis (PrEP).
Methods: A PK/pharmacodynamic (PD) model was developed by measuring mucosal tissue concentrations of tenofovir, emtricitabine, their active metabolites (tenofovir diphosphate [TFVdp] and emtricitabine triphosphate [FTCtp], respectively), and competing endogenous nucleotides (dATP and dCTP) in 47 healthy women. TZM-bl and CD4(+) T cells were used to identify 90% effective concentration (EC90) ratios of TFVdp to dATP and FTCtp to dCTP (alone and in combination) for protection against HIV.
The male genital tract is a potential site of viral persistence. Therefore, adequate concentrations of antiretrovirals are required to eliminate HIV replication in the genital tract. Despite higher zidovudine (ZDV) and lamivudine (3TC) concentrations in seminal plasma (SP) than in blood plasma (BP) (SP/BP drug concentration ratios of 2.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) increases survival and neurite extension of spiral ganglion neurons (SGNs), the primary neurons of the auditory system, via yet unknown signaling mechanisms. In other cell types, signaling is achieved by the GPI-linked GDNF family receptor α1 (GFRα1) via recruitment of transmembrane receptors: Ret (re-arranged during transformation) and/or NCAM (neural cell adhesion molecule). Here we show that GDNF enhances neuritogenesis in organotypic cultures of spiral ganglia from 5-day-old rats and mice.
View Article and Find Full Text PDFCommercially available Ni/Al(2)O(3) samples containing various concentrations of potassium were used to achieve carbon deposition from CO(2) via catalytic hydrogenation. Experimental results show that K additives can induce the formation of carbon nanofibers or carbon deposition on Ni/Al(2)O(3) during the reverse water-gas shift reaction. This work proposes that the formation rate of carbon deposition depends closely on ensemble control, suggesting that the ensemble size necessary to form carbon may be approximately 0.
View Article and Find Full Text PDF