Background: BI 836880 is a humanized bispecific nanobody® that binds to and blocks vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2). A comprehensive biomarker and modeling approach is presented here that supported dose finding for BI 836880.
Methods: Two Phase I dose-escalation studies (1336.
Angew Chem Int Ed Engl
December 2024
The escalating issue of plastic waste generation has prompted the search for an effective solution to address these challenges. In this study, we present a novel plasma-enabled strategy for the rapid breakdown of various types of plastic wastes, including mixtures, into high-value carbon nanomaterials and hydrogen. The H yield and selectivity achieved through the implemented catalyst-free plasma-enabled strategy are 14.
View Article and Find Full Text PDFThe European Bioanalysis Forum, alongside key industry stakeholders, has been driving the discussions around the implementation of context-of use for biomarker assays to ensure that these assays are validated appropriately depending on their purpose. Insights into understanding why the implementation of context-of-use in assay strategies has also shown that the key stakeholder, or requester for the biomarker data, is responsible for providing the context-of-use statement for all biomarker assay requests. Experts from across the industry haves repeatedly sought a cross-industry recommended format in which the context-of-use statement could be provided.
View Article and Find Full Text PDFRecently, many studies have been published regarding electrochemical oxygen reduction reaction for generating hydrogen peroxide (HO) using gas diffusion electrodes (GDEs) for various applications. Sodium salts solved in deionized water were usually used as supporting electrolytes. In technical applications, however, tap water-based electrolytes with hardeners are particularly relevant and have only been considered in a few studies to date.
View Article and Find Full Text PDFUsing electrolysis systems to degrade organics in wastewater encourages this technique to remove micropollutants (MPs) in different types of water. In this work, a cell consisting of an anode as a boron-doped diamond (BDD) electrode combined with a gas diffusion (GDE) cathode without a separator showed that MPs degradation can be effectively achieved. Investigating different operating parameters, it was stated that applying a low current density (2 mA/cm) and setting the Reynolds number of the electrolyte flow through the cell at the laminar range raised the treatment time by 3-fold at the same energy demand.
View Article and Find Full Text PDFMicrobial fuel cells are a promising technology for future wastewater treatment, as it allows cleaning and power generation simultaneously. The bottleneck of microbial fuel cells is often its cathodes because they determine the power output. Gas diffusion electrodes might overcome this bottleneck due to their low production costs and high oxygen reduction rates.
View Article and Find Full Text PDFSince 2011, the European Bioanalysis Forum has been discussing the topic of context-of-use for biomarker assays, in support of a cross-industry implementation of its principles. The discussions have led to the acknowledgement of the challenges that we face as an industry in implementing these principles. In addition to scientific recommendations, the European Bioanalysis Forum has addressed these challenges by providing recommendations on organizational design, and what works in both sponsor and contract research organizations, to support and enable context-of-use across biomarker strategies.
View Article and Find Full Text PDFThe efficiency of a wet chemical route to synthesize gold nanostructures with tunable size and shape significantly depends on the applied solvent and the interaction of solvent molecules with other species such as gold ions. The ability of the organic solvent -methyl-2-pyrrolidone (NMP) as a suitable medium for application in star-like gold nanostructure (AuNS) synthesis with a tunable morphology at ambient conditions has been investigated. The time-dependent analysis of the UV-vis absorption spectra of AuCl in a pure NMP solution illustrates the role of NMP as simultaneous complexing and reducing agents.
View Article and Find Full Text PDFIon-track etching represents a highly versatile way of introducing artificial pores with diameters down into the nm-regime into polymers, which offers considerable synthetic flexibility in template-assisted nanofabrication schemes. While the mechanistic foundations of ion-track technology are well understood, its potential for creating structurally and compositionally complex nano-architectures is far from being fully tapped. In this study, we showcase different strategies to expand the synthetic repertoire of ion-track membrane templating by creating several new 1D nanostructures, namely metal nanotubes of elliptical cross-section, funnel-shaped nanotubes optionally overcoated with titania or nickel nanospike layers, and concentrical as well as stacked metal nanotube-nanowire heterostructures.
View Article and Find Full Text PDFVanadium-ion transport through the polymer membrane results in a significant decrease in the capacity of vanadium redox flow batteries. It is assumed that five vanadium species are involved in this process. Micro X-ray absorption near-edge structure spectroscopy (micro-XANES) is a potent method to study chemical reactions during vanadium transport inside the membrane.
View Article and Find Full Text PDFDuring the first half of 2021, and due to the SARS-CoV-2 pandemic preventing in-person meetings, the European Bioanalysis Forum organized four workshops as live interactive online meetings. The themes discussed at the workshops were carefully selected to match the cyberspace dynamics of the meeting format. The first workshop was a training day on challenges related to immunogenicity.
View Article and Find Full Text PDFA core component of energy storage systems like vanadium redox flow batteries (VRFB) is the polymer electrolyte membrane (PEM). In this work, the frequently used perfluorosulfonic-acid (PFSA) membrane Nafion™ 117 and a novel poly (vinylidene difluoride) (PVDF)-based membrane are investigated. A well-known problem in VRFBs is the vanadium permeation through the membrane.
View Article and Find Full Text PDFRedox flow batteries such as the all-vanadium redox flow battery (VRFB) are a technical solution for storing fluctuating renewable energies on a large scale. The optimization of cells regarding performance, cycle stability as well as cost reduction are the main areas of research which aim to enable more environmentally friendly energy conversion, especially for stationary applications. As a critical component of the electrochemical cell, the membrane influences battery performance, cycle stability, initial investment and maintenance costs.
View Article and Find Full Text PDFBioinspired solid-state nanopores and nanochannels have attracted interest in the last two decades, as they are envisioned to advance future sensing, energy conversion, and separation concepts. Although much effort has been made regarding functionalization of these materials, multifunctionality and accurate positioning of functionalities with nanoscale precision still remain challenging. However, this precision is necessary to meet transport performance and complexity of natural pores in living systems, which are often based on nonequilibrium states and compartmentalization.
View Article and Find Full Text PDFNickel cobalt layered double hydroxide (NiCo-LDH)-based materials have recently emerged as catalysts for important electrochemical applications. However, they frequently suffer from low electrical conductivity and agglomeration, which in turn impairs their performance. Herein, we present a catalyst design based on integrated, self-supported nickel nanotube networks (Ni-NTNWs) loaded with NiCo-LDH nanosheets, which represents a binder-free, hierarchically nanostructured electrode architecture combining continuous conduction paths and openly accessible macropores of low tortuosity with an ultrahigh density of active sites.
View Article and Find Full Text PDFIn 2012, the European Bioanalysis Forum published a recommendation on biomarker method development and the bioanalysis of biomarkers in support of drug development. Since then, there has been significant discussion on how to bring the topic of context of use of biomarker assays to the forefront so that the purpose of the assay, the use of the data and the decisions being made with the data are well defined and clearly understood, not just by the bioanalytical scientist, but across all stakeholders. Therefore, it is imperative that discussions between the bioanalytical laboratory and the end users of the data happen early (and regularly) in the drug development process to enable the right assays to be developed and appropriately validated to generate the correct data and allow suitable decisions to be made.
View Article and Find Full Text PDFOwing to their large surface area, continuous conduction paths, high activity, and pronounced anisotropy, nanowires are pivotal for a wide range of applications, yet far from thermodynamic equilibrium. Their susceptibility toward degradation necessitates an in-depth understanding of the underlying failure mechanisms to ensure reliable performance under operating conditions. In this study, we present an in-depth analysis of the thermally triggered Plateau-Rayleigh-like morphological instabilities of electrodeposited, polycrystalline, 20-40 nm thin platinum nanowires using transmission electron microscopy in a controlled temperature regime, ranging from 25 to 1100 °C.
View Article and Find Full Text PDFMany nanofabrication processes require sophisticated equipment, elevated temperature, vacuum or specific atmospheric conditions, templates, and exotic chemicals, which severely hamper their implementation in real-world applications. In this study, we outline a fully wet-chemical procedure for equipping a 3D carbon felt (CF) substrate with a multifunctional, titania nanospike-supported Pt-Pd nanoparticle (Pt-Pd-TiO@CF) layer in a facile and scalable manner. The nanostructure, composition, chemical speciation, and formation of the material was meticulously investigated, evidencing the conformal coating of the substrate with a roughened layer of nanocrystalline rutile spikes by chemical bath deposition from Ti solutions.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2020
The understanding and design of wetting-transport and wetting-charge-transport interplay in nanometer-sized pores is a still not fully understood key step in improving nanopore transport-related applications. A control of mesopore wettability accompanied by pore filling and ionic mesopore accessibility analysis is expected to deliver major insights into this interplay of nanoscale pore wetting and transport. For a systematic understanding, we demonstrate a gradual adjustment of nanopore ionic accessibility by gradually tuning silica nanopore wettability using chemical vapor phase deposition of 1H,1H,2H,2H-perfluorooctyl dimethylchlorosilane.
View Article and Find Full Text PDFPolymer electrolyte membranes (PEM) prepared by radiation-induced graft copolymerization are investigated. For this purpose, commercial poly(ethylene-alt-tetrafluoroethylene) (ETFE) films were activated by electron beam treatment and subsequently grafted with the monomers glycidyl methacrylate (GMA), hydroxyethyl methacrylate (HEMA) and ,'-methylenebis(acrylamide) (MBAA) as crosslinker. The target is to achieve a high degree of grafting () and high proton conductivity.
View Article and Find Full Text PDFThe analysis of biomarkers by ligand-binding assays offers significant challenges compared with the bioanalysis of small and large molecule drugs. The presence of endogenous analyte is a commonly cited issue. Also the sourcing and application of appropriate calibration or reference standards can present many issues.
View Article and Find Full Text PDFRecent advances in microelectromechanical systems (MEMS) based chips for in situ transmission electron microscopy are opening exciting new avenues in nanoscale research. The capability to perform current-voltage measurements while simultaneously analyzing the corresponding structural, chemical or even electronic structure changes during device operation would be a major breakthrough in the field of nanoelectronics. In this work we demonstrate for the first time how to electrically contact and operate a lamella cut from a resistive random access memory (RRAM) device based on a Pt/HfO/TiN metal-insulator-metal (MIM) structure.
View Article and Find Full Text PDFEuropean Bioanalysis Forum Focus Workshop, Lisbon, Portugal, 9-10 June 2016 At the recent European Bioanalysis Forum's Focus Workshop 'Bringing Assay Validation and Analysis of Biomarkers into Practice', the discussion on best practice for biomarker assay validation continued. Both the presentations and the adjacent panel discussions yielded valuable food for thought for the broader bioanalytical community. The present conference report summarizes the essence from these discussions and from the proposals or conclusions made by all delegates on how to increase the necessary connectivity of the stakeholders involved in the bioanalysis of biomarkers.
View Article and Find Full Text PDF