Publications by authors named "Kunwoo Lee"

Lipopeptides are an important family of natural products, some of which are clinically used as antibiotics to treat multidrug-resistant pathogens. Although the lipid moieties play a crucial role in balancing antibacterial activity and hemolytic toxicity, modifying the lipid moieties has been challenging due to the complexity of the lipidation process in lipopeptide biosynthesis. Here, we show that the lipid profile can be altered by engineering both secondary and primary metabolisms, using daptomycin as an example.

View Article and Find Full Text PDF

ConspectusNickel pincer systems have recently attracted much attention for applications in various organometallic reactions and catalysis involving small molecule activation. Their exploration is in part motivated by the presence of nickel in natural systems for efficient catalysis. Among such systems, the nickel-containing metalloenzyme carbon monoxide dehydrogenase (CODH) efficiently and reversibly converts CO to CO at its active site.

View Article and Find Full Text PDF

This study aimed to assess the prognostic role of body mass index (BMI) in patients with metastatic renal cell carcinoma (mRCC) treated with first-line immune checkpoint inhibitor (ICI)-based therapy. We searched for relevant studies in the MEDLINE, Embase, and Cochrane Library databases. The initial search yielded 599 records, of which seven articles (2,517 patients) were selected for analysis.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are membrane-enclosed particles secreted by a variety of cell types. These vesicles encapsulate a diverse range of molecules, including proteins, nucleic acids, lipids, metabolites, and even organelles derived from their parental cells. While EVs have emerged as crucial mediators of intercellular communication, they also hold immense potential as both biomarkers and therapeutic agents for numerous diseases.

View Article and Find Full Text PDF

Diabetic sensory neuropathy (DSN) is one of the most common complications of type 2 diabetes (T2D), however the molecular mechanistic association between T2D and DSN remains elusive. Here we identify ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinase highly expressed in neurons, as a key molecule underlying T2D and DSN. Genetic ablation of UCHL1 leads to neuronal insulin resistance and T2D-related symptoms in Drosophila.

View Article and Find Full Text PDF

The field of gene editing has received much attention in recent years due to its immense therapeutic potential. In particular, gene editing therapeutics, such as the CRISPR-Cas systems, base editors, and other emerging gene editors, offer the opportunity to address previously untreatable disorders. This review aims to summarize the therapeutic applications of gene editing based on mRNA delivery.

View Article and Find Full Text PDF

A phosphide nickel(II) phenoxide pincer complex () reacts with CO(g) to give a pseudo-tetrahedral nickel(0) monocarbonyl complex () possessing a phosphinite moiety. This metal-ligand cooperative (MLC) transformation occurs with a (PPP)Ni scaffold (PPP = P[2-PPr-CH]), which can accommodate both square planar and tetrahedral geometries. The 2-electron reduction of a nickel(II) species induced by CO coordination involves group transfer to generate a P-O bond.

View Article and Find Full Text PDF

Gene therapy approaches that utilize Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) ribonucleases have tremendous potential to treat human disease. However, CRISPR therapies delivered by integrating viral vectors are limited by potential off-target genome editing caused by constitutive activation of ribonuclease functions. Thus, biomaterial formulations are being used for the delivery of purified CRISPR components to increase the efficiency and safety of genome editing approaches.

View Article and Find Full Text PDF

A temporal phase unwrapping method is proposed to generate an unwrapped phase map for a robust three-dimensional (3D) scan. The proposed algorithm seeks to improve the accuracy of the 3D data points obtained through the phase unwrapping process. By applying the k-nearest-neighbor search method, the error bound of the wrapped phase is controlled with improved flexibility.

View Article and Find Full Text PDF

Technologies that can safely edit genes in the brains of adult animals may revolutionize the treatment of neurological diseases and the understanding of brain function. Here, we demonstrate that intracranial injection of CRISPR-Gold, a nonviral delivery vehicle for the CRISPR-Cas9 ribonucleoprotein, can edit genes in the brains of adult mice in multiple mouse models. CRISPR-Gold can deliver both Cas9 and Cpf1 ribonucleoproteins, and can edit all of the major cell types in the brain, including neurons, astrocytes and microglia, with undetectable levels of toxicity at the doses used.

View Article and Find Full Text PDF

Due to the increased availability of digital human models, the need for knowing human movement is important in product design process. If the human motion is derived rapidly as design parameters change, a developer could determine the optimal parameters. For example, the optimal design of the door panel of an automobile can be obtained for a human operator to conduct the easiest ingress and egress motion.

View Article and Find Full Text PDF

This study proposes an ingress/egress discomfort prediction algorithm using an in-depth biomechanical method and motion capture database. The ingress/egress motion of the subject was captured using an optical motion capture system and physically adjustable vehicle mock-up. The subjective discomfort evaluation data were also recorded at the same time.

View Article and Find Full Text PDF

Engineering of the Cpf1 crRNA has the potential to enhance its gene editing efficiency and non-viral delivery to cells. Here, we demonstrate that extending the length of its crRNA at the 5' end can enhance the gene editing efficiency of Cpf1 both in cells and in vivo. Extending the 5' end of the crRNA enhances the gene editing efficiency of the Cpf1 RNP to induce non-homologous end-joining and homology-directed repair using electroporation in cells.

View Article and Find Full Text PDF
Article Synopsis
  • Impingement is a potential complication after total hip arthroplasty (THA) if osteophytes (bone spurs) aren't carefully managed, as they can cause instability or prosthetic failure.
  • The study investigated the location of impingement and established the maximum size of osteophytes that can be tolerated without causing issues during daily activities, using a 3D simulation on 35 hip models.
  • Results showed that osteophytes in the antero-superior and posterior areas should be reduced to 4.2-7.2 mm to prevent impingement, while larger osteophytes in other areas were deemed acceptable.
View Article and Find Full Text PDF

Protein therapeutics based on transcription factors, gene editing enzymes, signaling proteins and protein antigens, have the potential to provide cures for a wide number of untreatable diseases, but cannot be developed into therapeutics due to challenges in delivering them into the cytoplasm. There is therefore great interest in developing strategies that can enable proteins to enter the cytoplasm of cells. In this review article we will discuss recent progress in intracellular protein therapeutics, which are focused on the following four classes of therapeutics, Firstly, vaccine development, secondly, transcription factor therapies, thirdly, gene editing and finally, cancer therapeutics.

View Article and Find Full Text PDF

Micro- and nano-structuring have been highlighted over several decades in both science and engineering fields. In addition to continuous efforts in fabrication techniques, investigations in scalable nanomanufacturing have been pursued to achieve reduced feature size, fewer constraints in terms of materials and dimensional complexity, as well as improved process throughput. In this study, based on recent micro-/nanoscale fabrication processes, characteristics and key requirements for computer-aided design and manufacturing (CAD/CAM) systems for scalable nanomanufacturing were investigated.

View Article and Find Full Text PDF

Chemical modification of the gRNA and donor DNA has great potential for improving the gene editing efficiency of Cas9 and Cpf1, but has not been investigated extensively. In this report, we demonstrate that the gRNAs of Cas9 and Cpf1, and donor DNA can be chemically modified at their terminal positions without losing activity. Moreover, we show that 5' fluorescently labeled donor DNA can be used as a marker to enrich HDR edited cells by a factor of two through cell sorting.

View Article and Find Full Text PDF

Noninvasive immunization technologies have the potential to revolutionize global health by providing easy-to-administer vaccines at low cost, enabling mass immunizations during pandemics. Existing technologies such as transdermal microneedles are costly, deliver drugs slowly, and cannot generate mucosal immunity, which is important for optimal immunity against pathogens. We present a needle-free microjet immunization device termed MucoJet, which is a three-dimensional microelectromechanical systems-based drug delivery technology.

View Article and Find Full Text PDF

CRISPR/Cas9-based therapeutics, especially those that can correct gene mutations via homology directed repair (HDR), have the potential to revolutionize the treatment of genetic diseases. However, HDR-based therapeutics are challenging to develop because they require simultaneous delivery of Cas9 protein, guide RNA and donor DNA. Here, we demonstrate that a delivery vehicle composed of gold nanoparticles conjugated to DNA and complexed with cationic endosomal disruptive polymers can deliver Cas9 ribonucleoprotein and donor DNA into a wide variety of cell types, and efficiently correct the DNA mutation that causes Duchenne muscular dystrophy in mice via local injection, with minimal off-target DNA damage.

View Article and Find Full Text PDF

There is great need for the development of an efficient delivery method of macromolecules, including nucleic acids, proteins, and peptides, to cell cytoplasm without eliciting toxicity or changing cell behavior. High-aspect ratio nanomaterials have addressed many challenges present in conventional methods, such as cell membrane passage and endosomal degradation, and have shown the feasibility of efficient high-throughput macromolecule delivery with minimal perturbation of cells. This review describes the recent advances of in vitro and in vivo physical macromolecule delivery with high-aspect ratio nanostructured materials and summarizes the synthesis methods, material properties, relevant applications, and various potential directions.

View Article and Find Full Text PDF

Therapeutics based on transcription factors have the potential to revolutionize medicine but have had limited clinical success as a consequence of delivery problems. The delivery of transcription factors is challenging because it requires the development of a delivery vehicle that can complex transcription factors, target cells and stimulate endosomal disruption, with minimal toxicity. Here, we present a multifunctional oligonucleotide, termed DARTs (DNA assembled recombinant transcription factors), which can deliver transcription factors with high efficiency in vivo.

View Article and Find Full Text PDF

The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging.

View Article and Find Full Text PDF

This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica.

View Article and Find Full Text PDF

Kinetic analysis of walking requires joint kinematics and ground reaction force (GRF) measurement, which are typically obtained from a force plate. GRF is difficult to measure in certain cases such as slope walking, stair climbing, and track running. Nevertheless, estimating GRF continues to be of great interest for simulating human walking.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: