Publications by authors named "Kuntalee Rangnoi"

Fermented foods have been a component of the human diet since ancient times, including live bacteria employed to restore gut health, contributing to the frontline of functional food progression. Human concern about the harmful consequences of possible contaminants has increased significantly as their toxicity, carcinogenicity, and teratogenicity have become more publicized. In order to take preventive measures, it is essential to correctly identify and define the implications of contaminants and toxins in human health and intestinal microbiota balance for preventing or diagnosing epidemics before they cause damage.

View Article and Find Full Text PDF

CD99 was demonstrated to be a potential target for antibody therapy on T-acute lymphoblastic leukemia (T-ALL). The ligation of CD99 by certain monoclonal antibodies (mAbs) induced T-ALL apoptosis. However, the molecular basis contributing to the apoptosis of T-ALL upon anti-CD99 mAb engagement remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how adenosine and its derivative, cordycepin, affect the production of the monoclonal antibody adalimumab in two CHO cell lines with different amplification systems.*
  • Results indicated that while adenosine slowed cell growth and enhanced cell cycle activity, it optimally improved antibody production at a concentration of 1 mM on day 2, especially in GS-KO CHO cells in the absence of glucose.*
  • Cordycepin required much higher doses in CHO-DHFR cells to show effects on growth, but only increased antibody production in cultures without glucose, highlighting its variable efficiency compared to adenosine.*
View Article and Find Full Text PDF

The glutamine synthetase (GS)-based Chinese hamster ovary (CHO) selection system is an attractive approach to efficiently identify suitable clones in the cell line generation process for biologics manufacture, for which GS-knockout (GS-KO) CHO cell lines are commonly used. Since genome analysis indicated that there are two GS genes in CHO cells, deleting only 1 GS gene could potentially result in the activation of other GS genes, consequently reducing the selection efficiency. Therefore, in this study, both GS genes identified on chromosome 5 (GS5) and 1 (GS1) of CHO-S and CHO-K1, were deleted using CRISPR/Cpf1.

View Article and Find Full Text PDF

Efficient selection and production of antibody fragments in microbial systems remain to be a challenging process. To optimize microbial production of single-chain variable fragments (scFvs), we have chosen five model targets, 1) a hapten, Zearalenone (ZEN) mycotoxin, along with infectious agents 2) rabies virus, 3) Propionibacterium acnes, 4) Pseudomonas aeruginosa, and a cancer cell 5) acute myeloid leukemia cell line (HL-60). The scFv binders were affinity selected from a non-immunized human phage display scFv antibody library and genetically fused to the N-terminus of emerald green fluorescent protein (EmGFP).

View Article and Find Full Text PDF
Article Synopsis
  • * The study focused on the B27 monoclonal antibody, finding that it recognizes a specific peptide sequence (TDFLRMMLQEER) that is similar to a portion of the human IFN-γ protein, which is important for its interaction with its receptor.
  • * Mutations in specific amino acids (T27, F29, L30) of the IFN-γ protein diminished the binding ability of B27 mAb, revealing these residues are essential for the antibody's recognition and highlighting the implications for immun
View Article and Find Full Text PDF

Domain 1 of CD147 participates in matrix metalloproteinase (MMP) production and is a candidate for targeted therapy to prevent cancer invasion and metastasis. A functional mouse anti-CD147 monoclonal antibody, M6-1B9, was found to recognize domain 1 of CD147, and its respective mouse single-chain variable fragment (ScFvM61B9) was subsequently generated. The EDLGS epitope candidate for M6-1B9 was identified using the phage display peptide technique in this study.

View Article and Find Full Text PDF

The application of recombinant antibodies for the analysis of foods and food contaminants is now a major focus, given their capacity to be engineered to tailor their specificity, enhance their stability, and modify their structural formats to fit the desired analytical platform. In this study, human scFv antibody fragments generated against aflatoxin B1 (AFB1) were selected as the model antibody to explore the effect of antibody formats on their binding activity and to evaluate their potential use as immunoreagents for food contaminant analysis. Four human scFv antibody fragments against aflatoxin B1 (AFB1), previously isolated and engineered by chain shuffling, were converted into various formats, that is, scFv-AP fusions, scFv-Fc, and whole IgG molecules.

View Article and Find Full Text PDF

Chito-oligosaccharides (CHOS) are oligomers of D-glucosamine and N-acetyl-glucosamine. Anti-inflammatory activities of a wide variety of CHOS mixtures have previously been reported, mainly based on studies with mouse models and murine macrophages. Since the mouse and human immune systems are quite different, gaining insight into the activity of CHOS on human cell lines, using well-characterized CHOS mixtures, is of considerable interest.

View Article and Find Full Text PDF

This article reports the identification, engineering and characterisation of recombinant single chain variable fragment (scFv) antibody against Zearalenone (ZEN), an oestrogenic mycotoxin, using phage display antibody technology. To increase the chance of obtaining clones that can bind to free toxin, the conjugated proteins of the target antigen, i.e.

View Article and Find Full Text PDF

A human antiaflatoxin B1 (AFB1) scFv antibody (yAFB1-c3), selected from a naı̈ve human phage-displayed scFv library, was used as a template for improving and analysis of antibody-ligand interactions using the chain-shuffling technique. The variable-heavy and variable-light (VH/VL)-shuffled library was constructed from the VH of 25 preselected clones recombined with the VL of yAFB1-c3 and vice versa. Affinity selection from these libraries demonstrated that the VH domain played an important role in the binding of scFv to free AFB1.

View Article and Find Full Text PDF

A unique human phage display library was used to successfully generate a scFv to the highly carcinogenic toxin aflatoxin B1. Such an antibody has major potential applications in therapy and diagnostics. To further exploit its analytical capacity, the scFv was genetically fused to alkaline phosphatase, thereby generating a novel and highly sensitive self-indicating reagent.

View Article and Find Full Text PDF

Background: Phage display technology is a powerful new tool for making antibodies outside the immune system, thus avoiding the use of experimental animals. In the early days, it was postulated that this technique would eventually replace hybridoma technology and animal immunisations. However, since this technology emerged more than 20 years ago, there have only been a handful reports on the construction and application of phage display antibody libraries world-wide.

View Article and Find Full Text PDF