Phys Chem Chem Phys
September 2024
Low-dimensional carbon materials are of great interest and have tremendous potential for application in flexible plastic electronics. However, the development of devices based on carbon structural hybrids is often hindered due to the high recombination rate of photoexcited charges, low absorbance, and other factors. This work discusses the emergence of multi-component structural forms of carbon from single-wall carbon nanotubes (SWCNTs) and demonstrates the electrical nature of the film containing these heterogeneous low-dimensional structural derivatives that are amalgamated in a polyurethane matrix.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2021
Carbon nanoscrolls (CNS), a one dimensional (1D) helical form of carbon, have received enormous attention recently due to their unique structure, superior properties and potential applications. In this work, radial merging of HiPCO single walled nanotube (SWNT) bundles and emergence of CNS are reported following a reflux action involving wet oxidation, HCl washing and annealing at 900 °C. We observe macroscopic quantities of graphene sheets (GS) in the post-treated sample and beautiful manifestation of curling and folding of the GS into CNS.
View Article and Find Full Text PDFWe investigate here the strain-induced growth of Cu at 600 °C and its interactions with a thermally grown, 270 nm-thick SiO layer on the Si(111) substrate. Our results show clear evidence of triangular voids and formation of triangular islands on the surface via a void-filling mechanism upon Cu deposition, even on a 270 nm-thick dielectric. Different coordination states, oxidation numbers, and chemical compositions of the Cu-grown film are estimated from the core level X-ray photoelectron spectroscopy (XPS) measurements.
View Article and Find Full Text PDF