Publications by authors named "Kunnatur B Koteshwara"

Background: In the current work, co-rotating twin-screw processor (TSP) was utilized to formulate solid crystal suspension (SCS) of carvedilol (CAR) for enhancing its solubility, dissolution rate, permeation and bioavailability using mannitol as a hydrophilic carrier.

Methods: molecular dynamics (MD) studies were done to simulate the interaction of CAR with mannitol at different kneading zone temperatures (KZT). Based on these studies, the optimal CAR: mannitol ratios and the kneading zone temperatures for CAR solubility enhancement were assessed.

View Article and Find Full Text PDF

The most common drawback of the existing and novel drug molecules is their low bioavailability because of their low solubility. One of the most important approaches to enhance the bioavailability in the enteral route for poorly hydrophilic molecules is amorphous solid dispersion (ASD). The solubility of compounds in amorphous form is comparatively high because of the availability of free energy produced during formulation.

View Article and Find Full Text PDF

The present research aims to investigate the miscibility, physical stability, solubility, and dissolution rate of a poorly water-soluble glibenclamide (GLB) in solid dispersions (SDs) with hydrophilic carriers like PEG-1500 and PEG-50 hydrogenated palm glycerides (Acconon). Mathematical theories such as Hansen solubility parameters, Flory Huggins theory, Gibbs free energy, and the in silico molecular dynamics simulation study approaches were used to predict the drug-carrier miscibility. To increase the solubility further, the effervescence technique was introduced to the conventional solid dispersions to prepare effervescent solid dispersions (ESD).

View Article and Find Full Text PDF

Topical drug delivery provides several benefits over other conventional routes by providing localizing therapeutic effects and also avoids the gastrointestinal tract circumventing the first-pass metabolism and enzymatic drug degradation. Being painless, the topical route also prevents the difficulties linked with the parenteral route. However, there are limitations to the current topical systems which necessitate the need for further research to find functional excipients to overcome these limitations.

View Article and Find Full Text PDF

Nanostructured lipid carriers (NLCs) of asenapine maleate (ASPM) were enteric coated with polymethacrylate polymers (Eudragit®) for oral delivery. The present study aimed to compare the feasibility of direct enteric coating of NLCs and enteric coating of hard gelatin capsules filled with lyophilized ASPM-NLCs. Organic solution of Eudragit® was prepared using acetone containing 3% v/v water, acetone or ethanol.

View Article and Find Full Text PDF

Aim: The present study was aimed to improve the permeability of Luliconazole (LZ) and to localize high drug concentrations at skin layers by Quality by Design (QbD) based Nanostructured lipid carriers (NC) based gel.

Methods: Quality Target Product Profile was set, and Critical Quality attributes were identified. FT-IR and DSC studies confirmed compatibility.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the pharmacokinetics and tissue distribution of asenapine maleate (ASPM), a new antipsychotic, after oral administration in rats.
  • A validated reversed-phase HPLC method was developed for analyzing ASPM, showing a good recovery rate and linearity in plasma and tissue samples.
  • The results revealed a long half-life of 32.74 hours and a tendency for ASPM to accumulate in highly perfused organs, indicating effective drug distribution.
View Article and Find Full Text PDF

A stability-indicating RP-HPLC method was developed for quantification of asenapine maleate (ASPM) in lipid nanoformulations. The proposed method was used to assess intrinsic stability of ASPM by conducting force degradation study. The results indicated no considerable degradation of ASPM on subjecting it to hydrolytic, oxidative, thermal and photolytic stresses.

View Article and Find Full Text PDF

Purpose: Nanosuspension in drug delivery is known to improve solubility, dissolution and eventually bioavailability of the drugs. The purpose of the study was to compare particle size of nanosuspensions prepared by the first generation approach and H96 approach and to evaluate the effectiveness of H96 approach.

Methods: The nanosuspension of aprepitant was prepared by HPH and H96 approach.

View Article and Find Full Text PDF