Publications by authors named "Kunming Zhao"

Incomplete combustion of residential solid fuel is one of the main anthropogenic sources for black carbon (BC). Fresh BC, mainly enriched in ultra-fine fraction of particles, can directly cross blood-brain barrier and are reported to be associated with neurodegenerative diseases. Because of the difficulties in collection and purification of BC from ambient particles, there are still significant knowledge gaps in understanding neurotoxicity caused by real-world BC.

View Article and Find Full Text PDF

Introduction: Extensive studies have established the correlation between long-term PM exposure and lung cancer, yet the mechanisms underlying this association remain poorly understood. PIWI-interacting RNAs (piRNAs), a novel category of small non-coding RNAs, serve important roles in various diseases. However, their biological function and mechanism in PM-induced lung cancer have not been thoroughly investigated.

View Article and Find Full Text PDF

PM pollution has been associated with the incidence of lung cancer, but the underlying mechanism is still unclear. PIWI-interacting RNAs (piRNAs), initially identified in germline cells, have emerged as a novel class of small non-coding RNAs (26 - 32 nucleotides) with diverse functions in various diseases, including cancer. However, the role and mechanism of piRNAs in the development of PM-induced lung cancer remain to be clarified.

View Article and Find Full Text PDF

Neuroblastoma (NB) is a challenging pediatric extracranial solid tumor characterized by a poor prognosis and resistance to chemotherapy. Identifying targets to enhance chemotherapy sensitivity in NB is of utmost importance. Increasing evidence implicates long noncoding RNAs (lncRNAs) play important roles in cancer, but their functional roles remain largely unexplored.

View Article and Find Full Text PDF

The interaction between animals and plants for seed dispersal and predation has received much attention; however, the underlying physiological mechanisms driving the responses of both seeds and animals remain unclear. We conducted a series of behaviour and physiology experiments to examine the role of plant hormones in regulating seed germination and rodent hoarding behaviour in the Quercus variabilis and Leopoldamys edwardsi systems. We found that acorns that were partially consumed by rodents had increased gibberellin (GA) levels and shortened germination time.

View Article and Find Full Text PDF

Continuous (chronic or sub-chronic) alcohol consumption induces a metabolic byproduct known as ketone bodies, and the accumulation of ketones leads to a life-threatening syndrome called alcoholic ketoacidosis. However, the mechanism underlining the physiological effects of ketone accumulation in alcoholic liver disease (ALD) is still in its infancy. Here, we discovered that mitochondrial acetyl-CoA accumulation was diverted into the ketogenesis pathway in ethanol-fed mice and ethanol-exposed hepatocytes.

View Article and Find Full Text PDF

Background: Scatter-hoarding animals store food in multiple locations within their home range and rely on spatial memory for subsequent localization and retrieval. The relationship between memory and scatter-hoarding behavior has been widely demonstrated, but the association of gut microbiota with spatial memory and seed-hoarding behavior of animals remains unclear.

Methods: In this study, by using enclosure behavior tests, memory tests including an object location test (OLT) and a novel object recognition test (NORT), and fecal microbiota transplantation (FMT) experiment, we evaluated the role of gut microbiota in affecting the memory and seed-hoarding behavior of rodents.

View Article and Find Full Text PDF

Diesel exhaust particles (DEP) pollution should be taken seriously because it is an extensive environmental and occupational health concern. Exploring early effect biomarkers is crucial for monitoring and managing DEP-associated health risk assessment. Here, we found that serum levels of 67 miRNAs were dysregulated in DEP exposure group.

View Article and Find Full Text PDF

Fine particulate matter (PM) exposure causes DNA mutations and abnormal gene expression leading to lung cancer, but the detailed mechanisms remain unknown. Here, analysis of genomic and transcriptomic changes upon a PM exposure-induced human bronchial epithelial cell-based malignant transformed cell model in vitro showed that PM exposure led to mutational signatures and transcriptional activation of along with other potential oncogenes. Moreover, by analyzing mutational profiles of 1117 non-small cell lung cancers (NSCLCs) from patients across four different geographic regions, we observed a significantly higher prevalence of mutational signatures in non-smoking NSCLCs than smoking in the Chinese cohorts, but this difference was not observed in TCGA or Singapore cohorts.

View Article and Find Full Text PDF

Both of nanoplastics (NPs) and Tetrabromobisphenol A (TBBPA) are organic pollutants widely detected in the environment and organisms. The large specific surface area of NPs makes them ideal vectors for carrying various toxicants, such as organic pollutants, metals, or other nanomaterials, posing potential threats to human health. This study used () to investigate the neurodevelopmental toxicity induced by combined exposure of TBBPA and polystyrene NPs.

View Article and Find Full Text PDF

Human health risk assessment of chemicals is essential but often relies on time-consuming and animal and labor-extensive procedures. Here, we develop a population-based, quantitative in vitro to in vivo extrapolation (QIVIVE) approach which depended on cellular effects monitored by in vitro assays, considered chemical internal concentration determined by LC-MS/MS, extrapolated into in vivo target tissue concentration through physiologically based pharmacokinetic (PBPK) modelling, and assessed populational health risk using in silico modelling. By applying this QIVIVE approach to 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), as a representative of the emerging pollutants, we find that 6:2 Cl-PFESA disturbed lipid homeostasis in HepG2 cells through enhancement of lipid accumulation and fatty acid β-oxidation, during which miR-93-5p served as a key event towards toxicity and thus, could serve as an efficient toxicity marker for risk assessment; further, the disruption potency of lipid homeostasis of 6:2 Cl-PFESA for the most of studied populations in China might be of moderate concern.

View Article and Find Full Text PDF

Bisphenols have been identified as emerging environmental pollutants of high concern with potential adverse effects through interactions with receptor-mediated pathways. However, their potential mechanism of action and health risks through the farnesoid X receptor (FXR) pathway remain poorly understood. In the present study, we aimed to explore the potential disruption mechanism of bisphenols through the FXR signalling pathway.

View Article and Find Full Text PDF

Numerous studies have revealed that ambient long-term exposure to fine particulate matter (PM) is significantly related to the development of lung cancer, but the molecular mechanisms of PM exposure-induced lung cancer remains unknown. As an important epigenetic regulator, microRNAs (miRNAs) play vital roles in responding to environment exposure and various diseases including lung cancer development. Here we constructed a PM-induced malignant transformed cell model and found that miR-200 family, especially miR-200a-3p, was involved in the process of PM induced lung cancer.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are emerging as essential players in multiple biological processes. Mitochondrial dynamics, comprising the continuous cycle of fission and fusion, are required for healthy mitochondria that function properly. Despite long-term recognition of its significance in cell-fate control, the mechanism underlying mitochondrial fusion is not completely understood, particularly regarding the involvement of lncRNAs.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS) and its alternative 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) are ubiquitous in various environmental and human samples. They have been reported to have hepatotoxicity effects, but the potential mechanisms remain unclear. Herein, we integrated metabolomics and proteomics analysis to investigate the altered profiles in metabolite and protein levels in primary human hepatocytes (PHH) exposed to 6:2 Cl-PFESA and PFOS at human exposure relevant concentrations.

View Article and Find Full Text PDF

MiRNAs are widely acknowledged as regulating gene expression and thus, being involved in broad biological functions, environmental responses, and the process of diseases. Epidemiology could provide exposure- or disease-relevant miRNAs, while toxicology could reveal the underlying mechanisms. Here, a new "Bottom-up" approach was proposed to identify miRNAs that are responsible for environmental exposure-induced adverse outcomes.

View Article and Find Full Text PDF

Lactic acid acidifies the tumor microenvironment and promotes multiple critical oncogenic processes, including immune evasion. Pyruvate kinase M2 (PKM2) is a dominant form of pyruvate kinase (PK) expressed in cancers that plays essential roles in metabolic reprograming and lactate production, rendering it as an attractive therapeutic target of cancer. However, the mechanism underlying PKM2 regulation remains unclear.

View Article and Find Full Text PDF

N, N-dimethylformamide (DMF) is a widely existing harmful environmental pollutant from industrial emission which can threat human health for both occupational and general populations. Epidemiological and experimental studies have indicated liver as the primary target organ of DMF. However, the molecular mechanism under DMF-induced hepatoxicity remains unclear.

View Article and Find Full Text PDF

Hypoxia-inducible factor-1α (HIF-1α) plays central roles in the hypoxia response. It is highly expressed in multiple cancers, but not always correlated with hypoxia. Mutation of the von Hippel-Lindau (VHL) gene, which encodes an E3 ligase, contributes to the constructive activation of HIF-1α in specific tumor types, as exemplified by renal cell carcinoma; but how VHL wild-type tumors acquire this ability is not completely understood.

View Article and Find Full Text PDF

Acetaminophen (APAP) overdose is one of the leading causes of acute liver failure in the US and other developed countries, the molecular mechanisms of APAP-induced hepatotoxicity remain speculative. PIWI-interacting RNAs (piRNAs), a novel class of small non-coding RNAs, have been identified as epigenetic regulators of transposon silencing, mRNA deadenylation, and elimination. However, the functional role of piRNAs in APAP-induced liver injury remains unclear.

View Article and Find Full Text PDF

Isoniazid (INH), an effective first-line drug for tuberculosis treatment, has been reported to be associated with hepatotoxicity for decades, but the underlying mechanisms are poorly understood. -acetyltransferase 2 (NAT2) is a Phase II enzyme that specifically catalyzes the acetylation of INH, and NAT2 expression/activity play pivotal roles in INH metabolism, drug efficacy, and toxicity. In this study, we systematically investigated the regulatory roles of microRNA (miRNA) in expression and INH-induced liver injury via a series of , , and analyses.

View Article and Find Full Text PDF

6:2 Chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), an alternative product of perfluorooctane sulfonate (PFOS), has been frequently detected in various environmental, wildlife, and human samples. A few studies revealed the hepatotoxicity of 6:2 Cl-PFESA in animals, but the underlying toxicity mechanisms remain largely unknown. In this study, we investigated the lipid metabolism disorders of 6:2 Cl-PFESA through miRNA-gene interaction mode in Huh-7 cells.

View Article and Find Full Text PDF

The emerging data indicates that long noncoding RNAs (lncRNAs) are involved in fundamental biological processes, and their deregulation may lead to oncogenesis and other diseases. LncRNA fulfil its biological functions at least in part by interacting with distinctive proteins. Here, we described two methods to identify the direct or indirect interactions between lncRNA and proteins: cross-linking and immunoprecipitation (CLIP) and RNA pull-down assay.

View Article and Find Full Text PDF

PM (particles matter smaller aerodynamic diameter of 2.5 μm) exposure, a major environmental risk factor for the global burden of diseases, is associated with high risks of respiratory diseases. Heme-oxygenase 1 (HMOX1) is one of the major molecular antioxidant defenses to mediate cytoprotective effects against diverse stressors, including PM-induced toxicity; however, the regulatory mechanism of HMOX1 expression still needs to be elucidated.

View Article and Find Full Text PDF

Cytochrome P450 (CYP) enzymes play critical roles in drug transformation, and the total CYPs are markedly decreased in alcoholic hepatitis (AH), a fatal alcoholic liver disease. miRNAs are endogenous small noncoding RNAs that regulate many essential biological processes. Knowledge concerning miRNA regulation of CYPs in AH disease is limited.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione8fijh6ml1ivos9jqct9f6ndu7ufdrbd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once