Publications by authors named "Kunlei Hong"

Three deep learning (DL)-based prediction models (PMs) using longitudinal CT images were developed to predict tuberculosis (TB) treatment outcomes. The internal dataset consists of 493 bacteriologically confirmed TB patients who completed the anti-tuberculosis treatment with three-time CT scans, including a pretreatment CT scan and two follow-up CT scans. PM1 was trained using only pretreatment CT scans, and PM2 and PM3 were developed by adding follow-up scans.

View Article and Find Full Text PDF

Background: To predict tuberculosis (TB) treatment outcomes at an early stage, prevent poor outcomes ofdrug-resistant tuberculosis(DR-TB) and interrupt transmission.

Methods: An internal cohort for model development consists of 204 bacteriologically-confirmed TB patients who completed anti-tuberculosis treatment, with one pretreatment and two follow-up CT images (612 scans). Three radiomics feature-based models (RM) with multiple classifiers of Bagging, Random forest and Gradient boosting and two deep-learning-based models (i.

View Article and Find Full Text PDF