Wood delignification and densification enable the production of high strength and/or transparent wood materials with exceptional properties. However, processing needs to be more sustainable and besides the chemical delignification treatments, energy intense hot-pressing calls for alternative approaches. Here, this study shows that additional softening of delignified wood via a mild swelling process using an ionic liquid-water mixture enables the densification of tube-line wood cells into layer-by-layer sheet structures without hot-pressing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
The excessive consumption of fossil-based plastics and the associated environmental concerns motivate the increasing exploitation of sustainable biomass-based materials for advanced applications. Natural wood-derived lamellar wood sponges via a top-down approach have recently attracted significant attention; however, the insufficient compressive fatigue resistance and lack of structural stability in water limit their wide applications. Here, we report a facile chemical cross-linking strategy to tackle these challenges, by which the cellulose fibrils in the lamellas are covalently bridged to enhance their connectivity.
View Article and Find Full Text PDFBuildings are significant end-users of global energy. About 20% of the energy consumption worldwide is used for maintaining a comfortable indoor climate. Therefore, passive systems for indoor temperature and humidity regulation that can respond to environmental changes are very promising to reduce buildings' energy consumption.
View Article and Find Full Text PDFCarbohydr Polym
September 2022
Metal-organic frameworks (MOFs) are among the most attractive functional porous materials. However, their processability and handling remains a substantial challenge because MOFs generally occur in powder form due to their crystalline nature. Combining MOFs and cellulose substrates to fabricate engineered materials offers an ideal solution to broaden their utilization as functional materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
The development of controlled processes for continuous hydrogen generation from solid-state storage chemicals such as ammonia borane is central to integrating renewable hydrogen into a clean energy mix. However, to date, most reported platforms operate in batch mode, posing a challenge for controllable hydrogen release, catalyst reusability, and large-scale operation. To address these issues, we developed flow-through wood-based catalytic microreactors, characterized by inherent natural oriented microchannels.
View Article and Find Full Text PDFWood is a sustainable structural material, but it cannot be easily shaped while maintaining its mechanical properties. We report a processing strategy that uses cell wall engineering to shape flat sheets of hardwood into versatile three-dimensional (3D) structures. After breaking down wood’s lignin component and closing the vessels and fibers by evaporating water, we partially re-swell the wood in a rapid water-shock process that selectively opens the vessels.
View Article and Find Full Text PDFProducing electricity from renewable sources and reducing its consumption by buildings are necessary to meet energy and climate change challenges. Wood is an excellent "green" building material and, owing to its piezoelectric behavior, could enable direct conversion of mechanical energy into electricity. Although this phenomenon has been discovered decades ago, its exploitation as an energy source has been impaired by the ultralow piezoelectric output of native wood.
View Article and Find Full Text PDFMost materials used for optical lighting applications need to produce a uniform illumination and require high mechanical and hydrophobic properties. However, they are rarely eco-friendly. Herein, a bio-based, polymer matrix-free, luminescent, and hydrophobic film with excellent mechanical properties for optical lighting purposes is demonstrated.
View Article and Find Full Text PDFDeveloping low-cost and biodegradable piezoelectric nanogenerators is of great importance for a variety of applications, from harvesting low-grade mechanical energy to wearable sensors. Many of the most widely used piezoelectric materials, including lead zirconate titanate (PZT), suffer from serious drawbacks such as complicated synthesis, poor mechanical properties (e.g.
View Article and Find Full Text PDFThe applicability of advanced composite materials with hierarchical structure that conjugate metal-organic frameworks (MOFs) with macroporous materials is commonly limited by their inferior mechanical properties. Here, a universal green synthesis method for the in situ growth of MOF nanocrystals within wood substrates is introduced. Nucleation sites for different types of MOFs are readily created by a sodium hydroxide treatment, which is demonstrated to be broadly applicable to different wood species.
View Article and Find Full Text PDFElegant design principles in biological materials such as stiffness gradients or sophisticated interfaces provide ingenious solutions for an efficient improvement of their mechanical properties. When materials such as wood are directly used in high-performance applications, it is not possible to entirely profit from these optimizations because stiffness alterations and fiber alignment of the natural material are not designed for the desired application. In this work, wood is turned into a versatile engineering material by incorporating mechanical gradients and by locally adapting the fiber alignment, using a shaping mechanism enabled by reversible interlocks between wood cells.
View Article and Find Full Text PDF