Publications by authors named "Kunjan D Rana"

Visual segregation of moving objects is a considerable computational challenge when the observer moves through space. Recent psychophysical studies suggest that directionally congruent, moving auditory cues can substantially improve parsing object motion in such settings, but the exact brain mechanisms and visual processing stages that mediate these effects are still incompletely known. Here, we utilized multivariate pattern analyses (MVPA) of MRI-informed magnetoencephalography (MEG) source estimates to examine how crossmodal auditory cues facilitate motion detection during the observer's self-motion.

View Article and Find Full Text PDF

Background: Neurofeedback aids volitional control of one's own brain activity using non-invasive recordings of brain activity. The applications of neurofeedback include improvement of cognitive performance and treatment of various psychiatric and neurological disorders. During real-time magnetoencephalography (rt-MEG), sensor-level or source-localized brain activity is measured and transformed into a visual feedback cue to the subject.

View Article and Find Full Text PDF

Magnetoencephalography (MEG) captures the magnetic fields generated by neuronal current sources with sensors outside the head. In MEG analysis these current sources are estimated from the measured data to identify the locations and time courses of neural activity. Since there is no unique solution to this so-called inverse problem, multiple source estimation techniques have been developed.

View Article and Find Full Text PDF

The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13-30 Hz) and gamma (31-80 Hz) bands.

View Article and Find Full Text PDF

Background: Deficits in face emotion perception are among the most pervasive aspects of schizophrenia impairments which strongly affects interpersonal communication and social skills.

Material And Methods: Schizophrenic patients (PSZ) and healthy control subjects (HCS) performed 2 psychophysical tasks. One, the SAFFIMAP test, was designed to determine the impact of subliminally presented affective or neutral images on the accuracy of face-expression (angry or neutral) perception.

View Article and Find Full Text PDF

Alpha band power, particularly at the 10 Hz frequency, is significantly involved in sensory inhibition, attention modulation, and working memory. However, the interactions between cortical areas and their relationship to the different functional roles of the alpha band oscillations are still poorly understood. Here we examined alpha band power and the cortico-cortical interregional phase synchrony in a psychophysical task involving the detection of an object moving in depth by an observer in forward self-motion.

View Article and Find Full Text PDF

Background: We compared the functional brain connectivity produced during resting-state in which subjects were not actively engaged in a task with that produced while they actively performed a visual motion task (task-state).

Material And Methods: In this paper we employed graph-theoretical measures and network statistics in novel ways to compare, in the same group of human subjects, functional brain connectivity during resting-state fMRI with brain connectivity during performance of a high level visual task. We performed a whole-brain connectivity analysis to compare network statistics in resting and task states among anatomically defined Brodmann areas to investigate how brain networks spanning the cortex changed when subjects were engaged in task performance.

View Article and Find Full Text PDF

Human perception, cognition, and action are supported by a complex network of interconnected brain regions. There is an increasing interest in measuring and characterizing these networks as a function of time and frequency, and inter-areal phase locking is often used to reveal these networks. This measure assesses the consistency of phase angles between the electrophysiological activity in two areas at a specific time and frequency.

View Article and Find Full Text PDF

An important and unresolved problem in the assessment of perceptual and cognitive deficits in neurological patients is how to choose from the many existing behavioral tests, a subset that is sufficient for an appropriate diagnosis. This problem has to be dealt with in clinical trials, as well as in rehabilitation settings and often even at bedside in acute care hospitals. The need for efficient, cost effective and accurate diagnostic-evaluations, in the context of clinician time constraints and concerns for patients' fatigue in long testing sessions, make it imperative to select a set of tests that will provide the best classification of the patient's deficits.

View Article and Find Full Text PDF

The detection of looming, the motion of objects in depth, underlies many behavioral tasks, including the perception of self-motion and time-to-collision. A number of studies have demonstrated that one of the most important cues for looming detection is optic flow, the pattern of motion across the retina. Schrater et al.

View Article and Find Full Text PDF