Publications by authors named "Kunio Yasunaga"

Article Synopsis
  • Familial lecithin: cholesterol acyltransferase (LCAT) deficiency (FLD) is a serious genetic disorder leading to issues like low HDL levels, corneal opacity, hemolytic anemia, and kidney damage, with no effective treatments available.
  • Researchers created genetically modified adipocytes (LCAT-GMAC) derived from a patient's fat cells to produce LCAT as a potential gene therapy, with a focus on assessing its safety and effectiveness in a patient over time.
  • The implantation of LCAT-GMACs proved safe, resulting in a significant increase in serum LCAT activity for three years; however, while it helped with some symptoms like hemolysis, the patient experienced fluctuating kidney function and hypertension, which
View Article and Find Full Text PDF

Objective: Transgenic mice overexpressing angiopoietin-related growth factor (AGF) exhibit enhanced angiogenesis, suggesting that AGF may be a useful drug target in ischemic disease. Our goal was to determine whether AGF enhances blood flow in a mouse hind-limb ischemia model and to define molecular mechanisms underlying AGF signaling in endothelial cells.

Methods And Results: Intramuscular injection of adenovirus harboring AGF into the ischemic limb increased AGF production, which increased blood flow through induction of angiogenesis and arteriogenesis, thereby reducing the necessity for limb amputation.

View Article and Find Full Text PDF

Angiopoietin-related growth factor (AGF), a member of the angiopoietin-like protein (Angptl) family, is secreted predominantly from the liver into the systemic circulation. Here, we show that most (>80%) of the AGF-deficient mice die at about embryonic day 13, whereas the surviving AGF-deficient mice develop marked obesity, lipid accumulation in skeletal muscle and liver, and insulin resistance accompanied by reduced energy expenditure relative to controls. In parallel, mice with targeted activation of AGF show leanness and increased insulin sensitivity resulting from increased energy expenditure.

View Article and Find Full Text PDF

A general understanding of the molecular mechanisms underlying angiogenesis is emerging from the analysis of targeted mutations in vasculature-related genes. These analyses reveal that angiopoietin signaling through the TIE2 receptor is involved in regulating angiogenesis. Recently, we and several other groups have independently identified several molecules containing a coiled-coil domain and a fibrinogen-like domain, both of which are structurally conserved in angiopoietins.

View Article and Find Full Text PDF

Radiation therapy is a widely used cancer treatment, but it causes side effects even when localized radiotherapy is used. Extensive apoptosis of microvascular endothelial cells of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Many in vitro studies suggest that angiopoietin-1 (Ang1) has potential therapeutic applications in enhancing endothelial cell survival.

View Article and Find Full Text PDF

Angiopoietin-1 (Ang1) has potential therapeutic applications in inducing angiogenesis, enhancing endothelial cell survival, and preventing vascular leakage. However, production of Ang1 is hindered by aggregation and insolubility resulting from disulfide-linked higher-order structures. Here, by replacing the N-terminal portion of Ang1 with the short coiled-coil domain of cartilage oligomeric matrix protein (COMP), we have generated a soluble, stable, and potent Ang1 variant, COMP-Ang1.

View Article and Find Full Text PDF

We report here the identification of angiopoietin-related growth factor (AGF) as a positive mediator for angiogenesis. To investigate the biologic function of AGF in angiogenesis, we analyzed the vasculature in the dermis of transgenic mice expressing AGF in mouse epidermal keratinocytes (K14-AGF). K14-AGF transgenic mice were grossly red, especially in the ears and snout, suggesting that hypervascularization had occurred in their skin.

View Article and Find Full Text PDF

Angiopoietins and angiopoietin-related proteins (ARPs) have been shown to regulate angiogenesis, a process essential for various neovascular diseases including tumors. Here, we identify ARP4/fasting-induced adipose factor/peroxisome proliferator-activated receptor gamma angiopoietin-related as a novel antiangiogenic modulatory factor. We hypothesized that ARP4 may regulate angiogenesis.

View Article and Find Full Text PDF

We report here the identification of an angiopoietin-related growth factor (AGF). To examine the biological function of AGF in vivo, we created transgenic mice expressing AGF in epidermal keratinocytes (K14-AGF). K14-AGF mice exhibited swollen and reddish ears, nose and eyelids.

View Article and Find Full Text PDF