In Arabidopsis thaliana, heterodimers comprising two bHLH family proteins, LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5) or its homolog TMO5-LIKE 1 (T5L1) control vascular development in the root apical meristem (RAM). The LHW-TMO5/T5L1 complex regulates vascular cell proliferation, vascular pattern organization, and xylem vessel differentiation; however, the mechanism of preparation for xylem vessel differentiation in the RAM remains elusive. We examined the relationship between LHW-T5L1 and VASCULAR-RELATED NAC-DOMAIN (VND) genes, which are key regulators of vessel differentiation, using reverse genetics approaches.
View Article and Find Full Text PDFSpatiotemporal control of cell division in the meristem is vital for plant growth. In the stele of the root apical meristem (RAM), procambial cells divide periclinally to increase the number of vascular cell files. Class III homeodomain leucine zipper (HD-ZIP III) proteins are key transcriptional regulators of RAM development and suppress the periclinal division of vascular cells in the stele; however, the mechanism underlying the regulation of vascular cell division by HD-ZIP III transcription factors (TFs) remains largely unknown.
View Article and Find Full Text PDFPlant tissue cultures are an efficient system to study cell wall biosynthesis in living cells in vivo. Tissue cultures also provide cells and culture medium from which enzymes and cell wall polymers can easily be separated for further studies. Tissue cultures with tracheary element differentiation or extracellular lignin formation have provided useful information related to several aspects of xylem and lignin formation.
View Article and Find Full Text PDFThe phytohormone auxin governs various developmental processes in plants including vascular formation. Auxin transport and biosynthesis are important factors in determining auxin distribution in tissues. Although the role of auxin transport in vein pattern formation is widely recognized, that of auxin biosynthesis in vascular development is poorly understood.
View Article and Find Full Text PDFXylem includes xylem parenchyma cells, fibers and tracheary elements. Differentiation of tracheary elements is an irreversible process that is controlled by the master regulator VASCULAR-RELATED NAC-DOMAIN 7 (VND7). Molecular events occurring downstream of VND7 are well understood, but little is known regarding upstream regulation of VND7.
View Article and Find Full Text PDFTissue-specific overexpression of useful genes, which we can design according to their cause-and-effect relationships, often gives valuable gain-of-function phenotypes. To develop genetic tools in woody biomass engineering, we produced a collection of Arabidopsis lines that possess chimeric genes of a promoter of an early xylem differentiation stage-specific gene, Arabidopsis Tracheary Element Differentiation-related 4 (AtTED4) and late xylem development-associated genes, many of which are uncharacterized. The AtTED4 promoter directed the expected expression of transgenes in developing vascular tissues from young to mature stage.
View Article and Find Full Text PDFControlling cell division and differentiation in meristems is essential for proper plant growth. Two bHLH heterodimers consisting of LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS 5 (TMO5)/TMO5-LIKE1 (T5L1) regulate periclinal cell division in vascular cells in the root apical meristem (RAM). In this study, we further investigated the functions of LHW-T5L1, finding that in addition to controlling cell division, this complex regulates xylem differentiation in the RAM via a novel negative regulatory system.
View Article and Find Full Text PDFHigher organisms possess mechanisms to maintain stem cells' proliferative and pluripotent states in stem cell niches [1]. Plants possess two types of stem cell niches in the root and shoot apical meristems, where regulatory interactions exist between stem cells and organizing cells. Recent studies provided new insights into the molecular mechanism of stem cell maintenance [2-4].
View Article and Find Full Text PDFIn higher plants, many extracellular proteins are involved in developmental processes, including cell-cell signaling and cell wall construction. Xylogen is an extracellular arabinogalactan protein (AGP) isolated from Zinnia elegans xylogenic culture medium, which promotes xylem cell differentiation. Xylogen has a unique structure, containing a non-specific lipid transfer protein (nsLTP) domain and AGP domains.
View Article and Find Full Text PDFPlant tissue cultures are an efficient system to study cell wall biosynthesis in living cells in vivo. Tissue cultures also provide cells and culture medium where enzymes and cell wall polymers can easily be separated for further studies. Tissue cultures with tracheary element differentiation or extracellular lignin formation have provided useful information related to several aspects of xylem and lignin formation.
View Article and Find Full Text PDFAuxin is essential for the formation of the vascular system. We previously reported that a polar auxin transport inhibitor, 1-N-naphthylphthalamic acid (NPA) decreased intracellular auxin levels and prevented tracheary element (TE) differentiation from isolated Zinnia mesophyll cells, but that additional auxin, 1-naphthaleneacetic acid (NAA) overcame this inhibition. To understand the role of auxin in gene regulation during TE differentiation, we performed microarray analysis of genes expressed in NPA-treated cells and NPA-NAA-treated cells.
View Article and Find Full Text PDFPhytosulfokine (PSK) is a sulfated peptide hormone required for the proliferation and differentiation of plant cells. Here, we characterize the physiological roles of PSK in transdifferentiation of isolated mesophyll cells of zinnia (Zinnia elegans 'Canary Bird') into tracheary elements (TEs). Transcripts for a zinnia PSK precursor gene, ZePSK1, show two peaks of expression during TE differentiation; the first accumulation is transiently induced in response to wounding at 24 h of culture, and the second accumulation is induced in the final stage of TE differentiation and is dependent on endogenous brassinosteroids.
View Article and Find Full Text PDFPlant Cell Physiol
November 2008
Arabidopsis sol2 mutants showed CLV3 peptide resistance. Twenty-six synthetic CLE peptides were examined in the clv1, clv2 and sol2 mutants. sol2 showed different levels of resistance to the various peptides, and the spectrum of peptide resistance was quite similar to that of clv2.
View Article and Find Full Text PDFTo understand the regulatory mechanisms of brassinosteroid (BR) biosynthesis in specific plant developmental processes, we first investigated the accumulation profiles of BRs and sterols in xylem differentiation in a Zinnia culture. The amounts of many substances in the late C28 sterol biosynthetic pathway to campesterol (CR), such as episterol and 24-methylenecholesterol, as well as those in the BR-specific biosynthetic pathway from CR to brassinolide (BL), were elevated in close association with tracheary element differentiation. Among them, 6-deoxotyphasterol (6-deoxoTY) accumulated to unusually high levels within cells cultured in tracheary element-inductive medium, while castasterone (CS) was not elevated either within or outside cells.
View Article and Find Full Text PDFIn plants and animals, small peptide ligands that signal in cell-cell communication have been suggested to be a crucial component of development. A bioassay of single-cell transdifferentation demonstrates that a dodecapeptide with two hydroxyproline residues is the functional product of genes from the CLE family, which includes CLAVATA3 in Arabidopsis. The dodecapeptide suppresses xylem cell development at a concentration of 10(-11) M and promotes cell division.
View Article and Find Full Text PDF