The pathway for axon regeneration in Caenorhabditis elegans is activated by SVH-1, a growth factor belonging to the HGF/plasminogen family. SVH-1 is a dual-function factor that acts as an HGF-like growth factor to promote axon regeneration and as a protease to regulate early development. It is important to understand how SVH-1 is converted from a protease to a growth factor for axon regeneration.
View Article and Find Full Text PDFAxon regeneration requires actomyosin interaction, which generates contractile force and pulls the regenerating axon forward. In Caenorhabditis elegans, TLN-1/talin promotes axon regeneration through multiple down-stream events. One is the activation of the PAT-3/integrin-RHO-1/RhoA GTPase-LET-502/ROCK (Rho-associated coiled-coil kinase)-regulatory non-muscle myosin light-chain (MLC) phosphorylation signaling pathway, which is dependent on the MLC scaffolding protein ALP-1/ALP-Enigma.
View Article and Find Full Text PDFProper control of epidermal growth factor receptor (EGFR) signaling is important for maintaining cellular homeostasis. Given that EGFR signaling occurs at the plasma membrane and endosomes following internalization, endosomal trafficking of EGFR spatiotemporally regulates EGFR signaling. In this process, leucine-rich repeat kinase 1 (LRRK1) has multiple roles in kinase activity-dependent transport of EGFR-containing endosomes and kinase-independent sorting of EGFR into the intraluminal vesicles (ILVs) of multivesicular bodies.
View Article and Find Full Text PDFMitophagy, a type of selective autophagy, specifically targets damaged mitochondria. The ULK complex regulates Parkin-mediated mitophagy, but the mechanism through which the ULK complex initiates mitophagosome formation remains unknown. The Rab7 GTPase (herein referring to Rab7a) is a key initiator of mitophagosome formation, and Ser-72 phosphorylation of Rab7 is important for this process.
View Article and Find Full Text PDFHistidine phosphorylation is an emerging noncanonical protein phosphorylation in animals, yet its physiological role remains largely unexplored. The protein histidine phosphatase (PHPT1) was recently identified for the first time in mammals. Here, we report that PHIP-1, an ortholog of PHPT1 in Caenorhabditis elegans, promotes axon regeneration by dephosphorylating GPB-1 Gβ at His-266 and inactivating GOA-1 Goα signaling, a negative regulator of axon regeneration.
View Article and Find Full Text PDFPrimary cilia are antenna-like organelles that regulate growth and development via extracellular signals. However, the molecular mechanisms underlying cilia dynamics, particularly those regulating their disassembly, are not well understood. Here, we show that leucine-rich repeat kinase 1 (LRRK1) plays a role in regulating cilia disassembly.
View Article and Find Full Text PDFChemical communication controls a wide range of behaviors via conserved signaling networks. Axon regeneration in response to injury is determined by the interaction between the extracellular environment and intrinsic growth potential. In this study, we investigated the role of chemical signaling in axon regeneration in We find that the enzymes involved in ascaroside pheromone biosynthesis, ACOX-1.
View Article and Find Full Text PDFNeuronal regeneration after injury depends on the intrinsic growth potential of neurons. Our study shows that UNC-16, a Caenorhabditis elegans JIP3 homolog, inhibits axonal regeneration by regulating initiation and rate of regrowth. This occurs through the inhibition of the regeneration-promoting activity of the long isoform of DLK-1 and independently of the inhibitory short isoform of DLK-1.
View Article and Find Full Text PDFThe postinjury regenerative capacity of neurons is known to be mediated by a complex interaction of intrinsic regenerative pathways and external cues. In , the initiation of axon regeneration is regulated by the nonmuscle myosin light chain-4 (MLC-4) phosphorylation signaling pathway. In this study, we have identified /, a mammalian CDK14 homolog, as a positive regulator of axon regeneration in motor neurons.
View Article and Find Full Text PDFAxon regeneration is an evolutionarily conserved process essential for restoring the function of damaged neurons. In hermaphrodites, initiation of axon regeneration is regulated by the RhoA GTPase-ROCK (Rho-associated coiled-coil kinase)-regulatory nonmuscle myosin light-chain phosphorylation signaling pathway. However, the upstream mechanism that activates the RhoA pathway remains unknown.
View Article and Find Full Text PDFThe breast cancer susceptibility protein BRCA1 and its partner BRCA1-associated RING domain protein 1 (BARD1) form an E3-ubiquitin (Ub) ligase complex that acts as a tumor suppressor in mitotic cells. However, the roles of BRCA1-BARD1 in postmitotic cells, such as neurons, remain poorly defined. Here, we report that BRC-1 and BRD-1, the orthologs of BRCA1 and BARD1, are required for adult-specific axon regeneration, which is positively regulated by the EGL-30 Gqα-diacylglycerol (DAG) signaling pathway.
View Article and Find Full Text PDFIn , axon regeneration is activated by a signaling cascade through the receptor tyrosine kinase (RTK) SVH-2. Axonal injury induces gene expression by degradation of the Mad-like transcription factor MDL-1. In this study, we identify the / gene encoding a protein containing F-box and F-box-associated domains as a regulator of axon regeneration in motor neurons.
View Article and Find Full Text PDFIn Caenorhabditis elegans, the JNK MAP kinase (MAPK) pathway is important for axon regeneration. The JNK pathway is activated by a signaling cascade consisting of the growth factor SVH-1 and its receptor tyrosine kinase SVH-2. Expression of the svh-2 gene is induced by axonal injury in a process involving the transcription factors ETS-4 and CEBP-1.
View Article and Find Full Text PDFAxon regeneration following neuronal injury is an important repair mechanism that is not well understood at present. In , axon regeneration is regulated by DDR-2, a receptor tyrosine kinase (RTK) that contains a discoidin domain and modulates the Met-like SVH-2 RTK-JNK MAP kinase signaling pathway. Here, we describe the / and genes, which encode components of a conserved glycosylation pathway, and show that they modulate axon regeneration in Overexpression of , but not of , can suppress the axon regeneration defect observed in mutants, suggesting that SVH-11 functions between DDR-2 and SVH-2 in this glycosylation pathway.
View Article and Find Full Text PDFAxon regeneration is a conserved mechanism induced by axon injury that initiates a neuronal response leading to regrowth of the axon. In , the initiation of axon regeneration is regulated by the JNK MAP kinase (MAPK) pathway. We have previously identified a number of genes affecting the JNK pathway using an RNAi-based screen.
View Article and Find Full Text PDFLigand-induced activation of epidermal growth factor receptor (EGFR) initiates trafficking events that re-localize the receptor from the cell surface to intracellular endocytic compartments. EGFR-containing endosomes are transported to lysosomes for degradation by the dynein-dynactin motor protein complex. However, this cargo-dependent endosomal trafficking mechanism remains largely uncharacterized.
View Article and Find Full Text PDFBackground: Phenoconversion is a phenomenon whereby some genotypic extensive metabolizers transiently exhibit drug metabolizing enzyme activity at similar level as that of poor metabolizers. Renal failure is known to decrease CYP3A activity in humans. Indoxyl sulfate, parathyroid hormone (PTH), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) have been reported to cause CYP3A downregulation in renal failure.
View Article and Find Full Text PDFThe ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the mechanisms regulating axon regeneration are not well understood. Here, we identify the brc-2 gene encoding a homolog of the mammalian BRCA2 tumor suppressor as a regulator of axon regeneration in Caenorhabditis elegans motor neurons.
View Article and Find Full Text PDFFollowing axon injury, a cascade of signaling events is triggered to initiate axon regeneration. However, the mechanisms regulating axon regeneration are not well understood at present. In Caenorhabditis elegans, axon regeneration utilizes many of the components involved in phagocytosis, including integrin and Rac GTPase.
View Article and Find Full Text PDFAlthough several studies have evaluated the efficacy of thiazolidinediones (TZD) for the treatment of Alzheimer's disease (AD), investigation of the impact of apolipoprotein E (ApoE) gene polymorphisms on the efficacy of TZD remains insufficient. We investigated the impact by conducting a systematic review and meta-analysis. MEDLINE, Cochrane Library, and Japana Centra Revuo Medicina were searched to identify relevant studies based on eligibility criteria.
View Article and Find Full Text PDFJIP3/UNC-16/dSYD is a MAPK-scaffolding protein with roles in protein trafficking. We show that it is present on the Golgi and is necessary for the polarized distribution of synaptic vesicle proteins (SVPs) and dendritic proteins in neurons. UNC-16 excludes Golgi enzymes from SVP transport carriers and facilitates inclusion of specific SVPs into the same transport carrier.
View Article and Find Full Text PDFCurr Opin Genet Dev
June 2017
Axon regeneration after nerve injury is a conserved biological process in many animals, including humans. The nematode Caenorhabditis elegans (C. elegans) has recently emerged as a genetically tractable model for studying regenerative responses in neurons.
View Article and Find Full Text PDFThe ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, initiation of axon regeneration is positively regulated by SVH-2 Met-like growth factor receptor tyrosine kinase (RTK) signaling through the JNK MAPK pathway.
View Article and Find Full Text PDFUnlabelled: The mechanisms that govern the ability of specific neurons to regenerate their axons after injury are not well understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we identify two components functioning upstream of the JNK pathway: the Ste20-related protein kinase MAX-2 and the Rac-type GTPase CED-10.
View Article and Find Full Text PDF