Robotic rehabilitation systems have been investigated to assist with motor dysfunction recovery in patients with lower-extremity paralysis caused by central nervous system lesions. These systems are intended to provide appropriate sensory feedback associated with locomotion. Appropriate feedback is thought to cause synchronous neuron firing, resulting in the recovery of function.
View Article and Find Full Text PDFCobalt chloride can create hypoxia-like state in vitro (referred to as chemical hypoxia). Several studies have suggested that chemical hypoxia may cause deleterious effects on myogenesis. The intrinsic underlying mechanisms of myoblast differentiation, however, are not fully understood.
View Article and Find Full Text PDFControl of the spatial distribution of various cell types is required to construct functional tissues. Here, we report a simple topographical structure changed the spatial cell density. A concave curved boundary was designed, which allowed the spatial descent moving of cells and the change in spatial distributions of co-cultured cells.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
March 2018
Electroporation, a physical transfection method to introduce genomic molecules in selective living cells, could be implemented by microelectrode devices. A local electric field generated by a finer electrode can induces cytomembrane poration in the electrode vicinity. To employ fine, high-speed scanning electrodes, we developed a fine virtual cathode pattern, which was generated on a cell adhesive surface of 100-nm-thick SiN membrane by inverted-electron beam lithography.
View Article and Find Full Text PDFWe have shown that pharmacological inhibition of HSP90 ATPase activity induces apoptosis of myoblasts during their differentiation. However, the signaling pathways remain not fully characterized. We report that pharmacological targeting of HSP90 with 17-AAG activates the intrinsic pathway including caspase-dependent and caspase-independent pathways.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
Annu Int Conf IEEE Eng Med Biol Soc
July 2017
The dynamic electromechanical control of spatial structures of biomolecules in aqueous solutions was demonstrated using a nano virtual cathode display. By generating a focused electric field around the biomolecules using an electron beam (EB), the molecules' spatiotemporal responses to the electrical stimuli, such as globule transition of DNA random coils and deformation of planar lipid bilayers and vesicles, were successfully observed. The proposed system may be applied to high resolution and high degree-of-freedom manipulations to measure the mechanical and structural properties of bio-nanomaterials.
View Article and Find Full Text PDF1/R control is a physiological control method of the total artificial heart (TAH) with which long-term survival was obtained with animal experiments. However, 1/R control occasionally diverged in the undulation pump TAH (UPTAH) animal experiment. To improve the control stability of the 1/R control, appropriate control time constant in relation to characteristics of the baroreflex vascular system was investigated with frequency analysis and numerical simulation.
View Article and Find Full Text PDFSynapse elimination and neurite pruning are essential processes for the formation of neuronal circuits. These regressive events depend on neural activity and occur in the early postnatal days known as the critical period, but what makes this temporal specificity is not well understood. One possibility is that the neural activities during the developmentally regulated shift of action of GABA inhibitory transmission lead to the critical period.
View Article and Find Full Text PDFControversy exists as to whether the muscle-specific E3 ubiquitin ligases MAFbx and MuRF1 are transcriptionally upregulated in the process of sarcopenia. In the present study, we investigated the effects of ageing on mRNA/protein expression of muscle-specific E3 ubiquitin ligases and Akt/Foxo signalling in gastrocnemius muscles of female mice. Old mice exhibited a typical sarcopenic phenotype, characterized by loss of muscle mass and strength, decreased amount of myofibrillar proteins, incidence of aberrant muscle fibres, and genetic signature to sarcopenia.
View Article and Find Full Text PDFWe report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue.
View Article and Find Full Text PDFManipulation techniques of biomolecules have been proposed for biochemical analysis which combine electrokinetic dynamics, such as electrophoresis or electroosmotic flow, with optical manipulation to provide high throughput and high spatial degrees of freedom. However, there are still challenging problems in nanoscale manipulation due to the diffraction limit of optics. We propose here a new manipulation technique for spatiotemporal control of chemical transport in nanofluids using an inverted electron-beam (EB) lithography system for liquid samples.
View Article and Find Full Text PDFProper execution of voluntary movement requires a sensorimotor transformation based on the initial limb state. For example, successfully reaching to a stable target requires the recruitment of different muscle groups depending on limb position at movement initiation. To test whether this transformation could occur at the spinal level, we stimulated the cervical spinal cord of anesthetized monkeys while systematically changing initial posture and examined the modulation of the twitch response induced in the upper limb muscles.
View Article and Find Full Text PDFCultured myotubes induced in vitro from myoblast cell lines have been widely used to investigate muscle functional properties and disease-related biological phenotypes. Until now, several cell patterning techniques have been applied to regulate in vitro myotube structures. However, these previous studies required specific geometry patterns or soft materials for inducing efficient myotube formation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2014
Reconstruction of skeletal muscle myotubes in vitro using myogenic cell lines have been widely carried out to study functional properties and disease-related biological changes of myotubes, such as intracellular calcium dynamics. However, the analysis of biological signals in isolated single myotubes or interactions among several myotubes is quite difficult problem because of the randomness in size, morphology and orientation of differentiated myotubes cultured on a conventional tissue culture dish. In the present study, we attempted to form uniform-size myotubes and detect intracellular calcium dynamics from the fabricated myotubes.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2015
We are currently developing an artificial arm/hand system which is capable of sensing stimuli and then transferring these stimuli to users as somatic sensations. Presently, we are evoking the virtual somatic sensations by electrically stimulating a sensory nerve fiber which innervates a single mechanoreceptor unit at the target area; this is done using a tungsten microelectrode that was percutaneously inserted into the use's peripheral nerve (a microstimulation method). The artificial arm/hand system is composed of a robot hand equipped with a pressure sensor system on its fingers.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2015
Development of methods to detect and classify neural spikes in extracellular voltage signals (e.g. commonly referred to as spike sorting) have been one of important subjects in neuroscience and neural engineering.
View Article and Find Full Text PDFOverlapping of extracellularly recorded neural spike waveforms causes the original spike waveforms to become hidden and merged, confounding the real-time detection and sorting of these spikes. Methods proposed for solving this problem include using a multi-trode or placing a restriction on the complexity of overlaps. In this paper, we propose a rapid sequential method for the robust detection and sorting of arbitrarily overlapped spikes recorded with arbitrary types of electrodes.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2013
The beam profile of an electron beam (EB) can be focused onto less than a nanometer spot and scanned over a wide field with extremely high speed sweeping. Thus, EB is employed for nano scale lithography in applied physics research studies and in fabrication of semiconductors. We applied a scanning EB as a control system for a living cell membrane which is representative of large scale complex systems containing nanometer size components.
View Article and Find Full Text PDFA pair of exoskeletal limbs for a rat has been developed based on a vehicular Brain-Machine Interface "Rat-Car". The "RatCar" is a whole-body motor prosthesis system for a rat developed by the authors, estimating locomotion velocity according to neural signals pattern to move the rat body by the vehicle instead of its original limbs. In this paper, exoskeletal limbs have displaced the wheels for more natural modality of body control.
View Article and Find Full Text PDFWe present a simple method to regulate the direction of axon development in cultured neurons using microfabrication and microfluidics techniques. We fabricate a PDMS-based device and place it onto a chemically micropatterned glass substrate. We confirm that cultured neurons extend neurites along the medium flow direction and the micropatterned regions.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
The cultured neuronal monolayer has been a promising model system for studying the neuronal dynamics, from single cell to network-wide level. Randomness in the reconstituted network structure has, however, hindered regulated signal transmissions from one neuron to another or from one neuronal population to another. Applying microfabrication-based cell patterning techniques is a promising approach to handling these problems.
View Article and Find Full Text PDFWe improved adhesiveness of a neuron-like cell, PC12, on a Parylene-C surface by O(2) plasma treatment which changes the surface from hydrophobic to hydrophilic. Neural cell adhesiveness on the plasma-treated Parylene-C was more than twenty times better compared to non-treated Parylene-C and it was close to that on a conventional polystyrene tissue-culture dish.
View Article and Find Full Text PDFTactile motion provides critical information for perception and manipulation of objects in touch. Perceived directions of tactile motion are primarily defined in the environmental coordinate, which means they change drastically with body posture even when the same skin sensors are stimulated. Despite the ecological importance of this perceptual constancy, the sensory processing underlying tactile directional remapping remains poorly understood.
View Article and Find Full Text PDFWe investigated neuronal cell differentiation, particularly neurite outgrowth, on the surface of diX H and diX AM using an in vitro examination of a neuron-like rat pheochromocytoma cell line, PC12. diX H and diX AM are in the parylene family of diX C (or Parylene-C), which is widely used as a novel coating material to insulate neural electrodes, and they have been recently commercialized; diX H and diX AM offer different features of biocompatibility. Previously, we found that these new parylene materials have high cell adhesiveness to neuronal cells whereas the adhesiveness of diX C is extremely low.
View Article and Find Full Text PDF