One way of increasing the energy density of lithium-ion batteries is to use electrode materials that exhibit high capacities owing to multielectron processes. Here, we report two novel materials, Li2TiS3 and Li3NbS4, which were mechanochemically synthesised at room temperature. When used as positive-electrode materials, Li2TiS3 and Li3NbS4 charged and discharged with high capacities of 425 mA h g(-1) and 386 mA h g(-1), respectively.
View Article and Find Full Text PDFThe new compound LiNaCo[PO(4)]F was synthesized by a solid state reaction route, and its crystal structure was determined by single-crystal X-ray diffraction measurements. The magnetic properties of LiNaCo[PO(4)]F were characterized by magnetic susceptibility, specific heat, and neutron powder diffraction measurements and also by density functional calculations. LiNaCo[PO(4)]F crystallizes with orthorhombic symmetry, space group Pnma, with a = 10.
View Article and Find Full Text PDFThe new compounds Li(2-x)Na(x)Ni[PO(4)]F (x = 0.7, 1, and 2) have been synthesized by a solid state reaction route. Their crystal structures were determined from single-crystal X-ray diffraction data.
View Article and Find Full Text PDFNew cyclic quaternary ammonium salts, composed of N-alkyl(alkyl ether)-N-methylpyrrolidinium, -oxazolidinium, -piperidinium, or -morpholinium cations (alkyl = nC4H9, alkyl ether = CH3OCH2, CH3OCH2CH2) and a perfluoroalkyltrifluoroborate anion ([R(F)BF3]-, R(F) = CF3, C2F5, nC3F7, nC4F9), were synthesized and characterized. Most of these salts are liquids at room temperature. The key properties of these salts--phase transitions, thermal stability, density, viscosity, conductivity, and electrochemical windows--were measured and compared to those of their corresponding [BF4]- and [(CF3SO2)2N]- salts.
View Article and Find Full Text PDFA new series of low-melting, low-viscosity, hydrophilic ionic liquids, which comprise 1-ethyl-3-methylimidazolium ([EMI]+) and alkyl(alkenyl)trifluoroborate anions ([RBF3]-, R=n-C(m)H(2m+1) (m=1-5), CH2CH), were prepared and characterized. The phase-transition behavior, thermal stability, density, viscosity, conductivity, and surface tension of these salts were measured. The influence of the structural variations, such as changing the length and fluorination of the alkyl chain (R) in the anion [RBF3]-, on the above properties was extensively investigated.
View Article and Find Full Text PDFA novel class of low-melting, hydrophobic ionic liquids based on relatively small aliphatic quaternary ammonium cations ([R(1)R(2)R(3)NR](+), wherein R(1), R(2), R(3) = CH(3) or C(2)H(5), R = n-C(3)H(7), n-C(4)H(9), CH(2)CH(2)OCH(3)) and perfluoroalkyltrifluoroborate anions ([R(F)BF(3)](-), R(F) = CF(3), C(2)F(5), n-C(3)F(7), n-C(4)F(9)) have been prepared and characterized. The important physicochemical and electrochemical properties of these salts, including melting point, glass transition, viscosity, density, ionic conductivity, thermal and electrochemical stability, have been determined and comparatively studied with those based on the corresponding [BF(4)](-) and [(CF(3)SO(2))(2)N](-) salts. The influence of the structure variation in the quaternary ammonium cation and perfluoroalkyltrifluoroborate ([R(F)BF(3)](-)) anion on the above physicochemical properties is discussed.
View Article and Find Full Text PDFA series of twenty two hydrophobic ionic liquids, 1-alkyl(alkyl ether)-3-methylimidazolium ([C(m)mim]+ or [C(m)O(n)mim]+; where Cm is 1-alkyl, Cm = nCmH(2m+1), m = 1-4 and 6; C(m)O(n) is 1-alkyl ether, C2O1 = CH3OCH2, C3O1 = CH3OCH2CH2, and C5O2 = CH3(OCH2CH2)2) perfluoroalkyltrifluoroborate ([RFBF3]-, RF = CF3, C2F5, nC3F7, nC4F9), have been prepared and characterized. Some of the important physicochemical properties of these salts including melting point, glass transition, viscosity, density, ionic conductivity, thermal and electrochemical stability, have been determined and were compared with those of the reported [BF4](-)-based ones. The influence of the structure variation in the imidazolium cation and the perfluoroalkyltrifluoroborate ([RFBF3]-) anion on the above physicochemical properties was discussed.
View Article and Find Full Text PDF