Publications by authors named "Kunhao Yu"

Article Synopsis
  • Recent research shows that tire and organic material abrasion is a major source of airborne particles and marine microplastics, which is not well understood.
  • The study reveals that these emissions are driven by a fatigue fracture process, where particles fall off the surface under repeated abrasion, especially when the abrasion exceeds the material's toughness.
  • A new scaling relationship has been established to estimate particulate emissions based on crack propagation rates, providing a basis for strategies to reduce airborne and marine plastic pollution.
View Article and Find Full Text PDF

In response to environmental stressors, biological systems exhibit extraordinary adaptive capacity by turning destructive environmental stressors into constructive factors; however, the traditional engineering materials weaken and fail. Take the response of polymers to an aquatic environment as an example: Water molecules typically compromise the mechanical properties of the polymer network in the bulk and on the interface through swelling and lubrication, respectively. Here, we report a class of 3D-printable synthetic polymers that constructively strengthen their bulk and interfacial mechanical properties in response to the aquatic environment.

View Article and Find Full Text PDF

Topological field-effect transistor is a revolutionary concept that physical fields are used to switch on and off quantum topological states of the condensed matter. Although this emerging concept has been explored in electronics, how to realize it in the acoustic realm remains elusive. In this work, a class of magnetoactive acoustic topological transistors capable of on-demand switching on and off topological states and reconfiguring topological edges with external magnetic fields is presented.

View Article and Find Full Text PDF

Living creatures are continuous sources of inspiration for designing synthetic materials. However, living creatures are typically different from synthetic materials because the former consist of living cells to support their growth and regeneration. Although natural systems can grow materials with sophisticated microstructures, how to harness living cells to grow materials with predesigned microstructures in engineering systems remains largely elusive.

View Article and Find Full Text PDF

The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides.

View Article and Find Full Text PDF

Most of the existing acoustic metamaterials rely on architected structures with fixed configurations, and thus, their properties cannot be modulated once the structures are fabricated. Emerging active acoustic metamaterials highlight a promising opportunity to on-demand switch property states; however, they typically require tethered loads, such as mechanical compression or pneumatic actuation. Using untethered physical stimuli to actively switch property states of acoustic metamaterials remains largely unexplored.

View Article and Find Full Text PDF

Lightweight and strong structural materials attract much attention due to their strategic applications in sports, transportation, aerospace, and biomedical industries. Nacre exhibits high strength and toughness from the brick-and-mortar-like structure. Here, we present a route to build nacre-inspired hierarchical structures with complex three-dimensional (3D) shapes by electrically assisted 3D printing.

View Article and Find Full Text PDF

Nanomaterials with ultrahigh specific surface areas are promising adsorbents for water-pollutants such as dyes and heavy metal ions. However, an ongoing challenge is that the dispersed nanomaterials can easily flow into the water stream and induce secondary pollution. To address this challenge, we employed nanomaterials to bridge hydrogel networks to form a nanocomposite hydrogel as an alternative water-pollutant adsorbent.

View Article and Find Full Text PDF

Acoustic metamaterials with negative constitutive parameters (modulus and/or mass density) have shown great potential in diverse applications ranging from sonic cloaking, abnormal refraction and superlensing, to noise canceling. In conventional acoustic metamaterials, the negative constitutive parameters are engineered via tailored structures with fixed geometries; therefore, the relationships between constitutive parameters and acoustic frequencies are typically fixed to form a 2D phase space once the structures are fabricated. Here, by means of a model system of magnetoactive lattice structures, stimuli-responsive acoustic metamaterials are demonstrated to be able to extend the 2D phase space to 3D through rapidly and repeatedly switching signs of constitutive parameters with remote magnetic fields.

View Article and Find Full Text PDF

3D architectures have been long harnessed to create lightweight yet strong cellular materials; however, the study regarding how 3D architectures facilitate the design of soft materials is at the incipient stage. Here, we demonstrate that 3D architectures can greatly facilitate the design of an intrinsically stretchable lattice conductor. We show that 3D architectures can be harnessed to enhance the overall stretchability of the soft conductors, reduce the effective density, enable resistive sensing of the large deformation of curved solids, and improve monitoring of a wastewater stream.

View Article and Find Full Text PDF