Publications by authors named "Kung-Hsien Ho"

Unlabelled: We have reported that the microtubule (MT) network in β cells attenuates this function by withdrawing insulin secretory granules (ISGs) away from the plasma membrane. Thus, high glucose-induced MT remodeling is required for robust glucose-stimulated insulin secretion (GSIS). We now show that α-cell secreted hormones, Gcg and/or Glp1, regulate the MT stability in β cells.

View Article and Find Full Text PDF

Pancreatic islet β cells preferentially secrete insulin toward the plasma membrane, making contact with the capillary extracellular matrix (ECM). Isolated islets separated from the exocrine acinar cells are the best system for cell biology studies of primary β cells, whereas isolated islets lose their capillary network during ex vivo culture. Providing the appropriate extracellular signaling by attaching islets to vascular ECM-coated surfaces can restore the polarized insulin secretion toward the ECM.

View Article and Find Full Text PDF
Article Synopsis
  • - Glucose stimulation leads to changes in microtubule structures in pancreatic β-cells, which enhances insulin secretion, but knocking down CAMSAP2 reduces insulin levels and affects glucose-stimulated insulin secretion (GSIS) without altering insulin vesicle release.
  • - Instead of stabilizing microtubules at their minus ends like in other cell types, CAMSAP2 primarily localizes to the Golgi apparatus in primary β-cells, which is unique to these cells and does not depend on its ability to bind to microtubules.
  • - The presence of a distinct CAMSAP2 isoform in primary β-cells suggests it has a different role promoting trafficking between the Golgi and endoplasmic reticulum (
View Article and Find Full Text PDF

Heterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules (MTs) affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that MT stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable MTs.

View Article and Find Full Text PDF

For sustainable function, each pancreatic islet β cell maintains thousands of insulin secretory granules (SGs) at all times. Glucose stimulation induces the secretion of a small portion of these SGs and simultaneously boosts SG biosynthesis to sustain this stock. The failure of these processes, often induced by sustained high-insulin output, results in type 2 diabetes.

View Article and Find Full Text PDF

The microtubule cytoskeleton of pancreatic islet β-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS.

View Article and Find Full Text PDF

Swi-independent 3a and 3b (Sin3a and Sin3b) are paralogous transcriptional coregulators that direct cellular differentiation, survival, and function. Here, we report that mouse Sin3a and Sin3b are coproduced in most pancreatic cells during embryogenesis but become much more enriched in endocrine cells in adults, implying continued essential roles in mature endocrine cell function. Mice with loss of in endocrine progenitors were normal during early postnatal stages but gradually developed diabetes before weaning.

View Article and Find Full Text PDF

Two key prerequisites for glucose-stimulated insulin secretion (GSIS) in β cells are the proximity of insulin granules to the plasma membrane and their anchoring or docking to the plasma membrane (PM). Although recent evidence has indicated that both of these factors are altered in the context of diabetes, it is unclear what regulates localization of insulin granules and their interactions with the PM within single cells. Here, we demonstrate that microtubule (MT)-motor-mediated transport dynamics have a critical role in regulating both factors.

View Article and Find Full Text PDF

In many eukaryotes, the centromere is epigenetically specified and not strictly defined by sequence. In contrast, budding yeast has a specific 125 bp sequence required for kinetochore function. Despite the difference in centromere specification, budding yeast and multicellular eukaryotic centromeres contain a highly conserved histone H3 variant, CENP-A.

View Article and Find Full Text PDF

Autophagy is a highly conserved degradation pathway for intracellular macromolecules and organelles. Among those characterized autophagy regulators, the ubiquitin-like protein Atg8 is found to be a membrane modifier that both regulates biogenesis of transport vesicles and interacts with the cargo receptor Atg19 for selective autophagic transport of the vacuolar enzyme prApe1 in budding yeast. The role of Atg8 in the enlargement of vesicle membrane during autophagosome biogenesis has been well documented,but how Atg8 coordinates vesicle formation and sorting of selective cargo is largely unknown.

View Article and Find Full Text PDF