A series of amino-pyrimidines was developed based upon an initial kinase cross-screening hit from a CDK2 program. Kinase profiling and structure-based drug design guided the optimization from the initial 1,2,3-benzotriazole hit to a potent and selective JNK inhibitor, compound 24f (JNK1 and 2 IC(50)=16 and 66 nM, respectively), with bioavailability in rats and suitable for further in vivo pharmacological evaluation.
View Article and Find Full Text PDFLysophosphatidic acid is a class of bioactive phospholipid that mediates most of its biological effects through LPA receptors, of which six isoforms have been identified. The recent results from LPA1 knockout mice suggested that blocking LPA1 signaling could provide a potential novel approach for the treatment of idiopathic pulmonary fibrosis. Here, we report the design and synthesis of pyrazole- and triazole-derived carbamates as LPA1-selective and LPA1/3 dual antagonists.
View Article and Find Full Text PDFP38alpha is a protein kinase that regulates the expression of inflammatory cytokines, suggesting a role in the pathogenesis of diseases such as rheumatoid arthritis (RA) or systemic lupus erythematosus. Here, we describe the preclinical pharmacology of pamapimod, a novel p38 mitogen-activated protein kinase inhibitor. Pamapimod inhibited p38alpha and p38beta enzymatic activity, with IC(50) values of 0.
View Article and Find Full Text PDFJun N-terminal kinase (JNK) is a stress activated serine/threonine protein kinase that phosphorylates numerous cellular protein substrates including the transcription factors c-Jun and ATF2. In this study, we defined the kinetic mechanism for the active form of JNK2alpha2. Double reciprocal plots of initial rates versus concentrations of substrate revealed the sequential nature of the JNK2alpha2 catalyzed ATF2 phosphorylation.
View Article and Find Full Text PDF