Publications by authors named "Kundu S"

We report the in situ synthesis of silver-containing polyisocyanurate (Ag-PI) gels via the self-polymerization of isocyanate-containing organic molecules (Desmodur N75) catalyzed by silver nitrate (AgNO) in ,'-dimethylformamide, which acts as both the solvent and reducing agent. Fourier transform infrared spectroscopy and X-ray diffraction confirmed the formation of polyisocyanurate and metallic silver nanoparticles. Gelation occurred in 30 min at 30 °C for Ag-PI, compared to 24 h for the uncatalyzed system, demonstrating AgNO's catalytic role.

View Article and Find Full Text PDF

In spite of being the second-lowest abundant proteinogenic amino acid, approximately 90% of proteins contain at least one tryptophan residue. Hence, the chemoselective functionalization of tryptophan residue can provide access to site-selective bioconjugation of almost all known proteins. With the increase in the utility of bioconjugated proteins and peptides as drugs and therapeutic agents, the development of smart protocols to fabricate and modulate biomolecules has flourished.

View Article and Find Full Text PDF

Despite extensive mapping of cis-regulatory elements (cREs) across cellular contexts with chromatin accessibility assays, the sequence syntax and genetic variants that regulate transcription factor (TF) binding and chromatin accessibility at context-specific cREs remain elusive. We introduce ChromBPNet, a deep learning DNA sequence model of base-resolution accessibility profiles that detects, learns and deconvolves assay-specific enzyme biases from regulatory sequence determinants of accessibility, enabling robust discovery of compact TF motif lexicons, cooperative motif syntax and precision footprints across assays and sequencing depths. Extensive benchmarks show that ChromBPNet, despite its lightweight design, is competitive with much larger contemporary models at predicting variant effects on chromatin accessibility, pioneer TF binding and reporter activity across assays, cell contexts and ancestry, while providing interpretation of disrupted regulatory syntax.

View Article and Find Full Text PDF

Environmental pollution has been a significant concern for the last few years. The leather industry significantly contributes to the economy but is one of Bangladesh's most prominent polluting industries. It is also responsible for several severe diseases such as cancer, lung diseases, and heart diseases of leather workers because they use bleaching agents and chemicals, and these have numerous adverse effects on human health.

View Article and Find Full Text PDF

Background: Floating knee injuries, involving simultaneous fractures of the femur and tibia in the same limb, present complex challenges in management. These injuries are often associated with high-energy trauma and carry significant morbidity.

Aims And Objectives: This study aims to evaluate the management strategies, challenges, and clinico-radiological outcomes of floating knee injuries in Jharkhand.

View Article and Find Full Text PDF

Knowing the spatial variation and predictors of women having sole autonomy over their healthcare decisions is crucial to design site-specific interventions. This study examined how women's sole autonomy over their healthcare choices varies geographically and what factors influence this autonomy among Bangladeshi women of childbearing age. Data were obtained from the Bangladesh Demographic and Health Survey (BDHS) 2017-18.

View Article and Find Full Text PDF

Glioblastoma tumors remain a formidable challenge for immune-based treatments because of their molecular heterogeneity, poor immunogenicity, and growth in the largely isolated and immunosuppressive neural environment. As the tumor grows, GBM cells change the composition and architecture of the neural extracellular matrix (ECM), affecting the mobility, survival, and function of immune cells such as tumor-associated microglia and infiltrated macrophages (TAMs). We have previously described the unique expression of the ECM protein EFEMP1/fibulin-3 in GBM compared to normal brain and demonstrated that this secreted protein promotes the growth of the GBM stem cell (GSC) population.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) is widely used in plant biology and is a powerful tool for studying cell identity and differentiation. However, the scarcity of known cell-type marker genes and the divergence of marker expression patterns limit the accuracy of cell-type identification and our capacity to investigate cell-type conservation in many species. To tackle this challenge, we devise a novel computational strategy called Orthologous Marker Gene Groups (OMGs), which can identify cell types in both model and non-model plant species and allows for rapid comparison of cell types across many published single-cell maps.

View Article and Find Full Text PDF

In the last years, it has been proved that some viruses are able to re-structure chromatin organization and alter the epigenomic landscape of the host genome. In addition, they are able to affect the physical mechanisms shaping chromatin 3D structure, with a consequent impact on gene activity. Here, we investigate with polymer physics genome re-organization of the host genome upon SARS-CoV-2 viral infection and how it can impact structural variability within the population of single-cell chromatin configurations.

View Article and Find Full Text PDF

Herein, the photophysical, photochemical properties and photogenerated excited state dynamics of two new Ru(II) complexes, viz. [Ru(p-ttp)(bpy)(PTA)] [1], [Ru(p-ttp)(phen)(PTA)] [2] having a phosphorus-based ligand PTA [p-ttp=p-tolyl terpyridine; bpy=2,2'-bipyridyl; phen=1,10-phenanthroline and PTA=1,3,5-triaza-7-phosphaadamantane] are reported. Upon excitation with 470 nm LED, [1] and [2] neither undergo ligand release nor exhibit room temperature luminescence/O generation.

View Article and Find Full Text PDF

Despite being a groundbreaking approach to treating colorectal cancer (CRC), the efficacy of immunotherapy is significantly compromised by the immunosuppressive tumor microenvironment and dysbiotic intestinal microbiota. Here, leveraging the superior carrying capacity and innate immunity-stimulating property of living bacteria, a nanomedicine-engineered bacterium, LR-S-CD/CpG@LNP, with optical responsiveness, immune-stimulating activity, and the ability to regulate microbiota metabolome is developed. Immunoadjuvant (CpG) and carbon dot (CD) co-loaded plant lipid nanoparticles (CD/CpG@LNPs) are constructed and conjugated to the surface of Limosilactobacillus reuteri (LR) via reactive oxygen species (ROS)-responsive linkers.

View Article and Find Full Text PDF

Background/objective: 4H syndrome is a rare form of leukodystrophy characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism. In 95% of cases, hypomyelination is present, but other clinical features, such as hypodontia and hypogonadotropic hypogonadism, are not always present and may not be necessary for diagnosis. Hypogonadotropic hypogonadism is the most common endocrine complication that can occur in 4H syndrome.

View Article and Find Full Text PDF

The short-chain (C to C) and ultrashort-chain (C to C) per- and polyfluoroalkyl substances (PFAS) are bioaccumulative, carcinogenic to humans, and harder to remove using current technologies, which are often detected in drinking and environmental water samples. Herein, we report the development of nonafluorobutanesulfonyl (NFBS) and polyethylene-imine (PEI)-conjugated FeO magnetic nanoparticle-based magnetic nanoadsorbents and demonstrated that the novel adsorbent has the capability for highly efficient removal of six different short- and ultrashort-chain PFAS from drinking and environmental water samples. Reported experimental data indicates that by capitalizing the cooperative hydrophobic, fluorophilic, and electrostatic interaction processes, NFBS-PEI-conjugated magnetic nanoadsorbents can remove ∼100% short-chain perfluorobutanesulfonic acid within 30 min from the water sample with a maximum absorption capacity of ∼234 mg g.

View Article and Find Full Text PDF

-(tetra-aryl) picket calix[4]pyrrole 1 featuring -fluorophenyl groups at all four -positions in a -configuration has been synthesized and characterized unambiguously using single-crystal X-ray diffraction analysis. This pre-organized system possesses a deep binding pocket created by the four aryl groups so that anions can be accommodated through anion-π interactions and four-point N-H⋯anion hydrogen bonds. Single-crystal X-ray diffraction analysis of the CsF and TEAF (TEA = tetraethylammonium) complexes of receptor 1 unequivocally confirms the formation of 1 : 1 complexes, revealing the binding modes in the solid state.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a prevalent chemical found in a range of consumer goods, which has raised worries about its possible health hazards. Comprehending the breakdown pathways of BPA is essential for evaluating its environmental consequences and addressing associated concerns. This review emphasizes the significance of studying the degradation/removal of BPA, with a specific focus on both natural and artificial routes.

View Article and Find Full Text PDF

The oxidation kinetics of phenylalanine (Phe) by Ce(IV) have been examined in both the absence and presence of aqueous micellar media with asymmetric tails, specifically using sodium dodecyl sulfate (SDS) and sodium tetradecyl sulfate (STS) surfactants. The reaction progress was monitored by observing a decrease in absorbance using UV-vis spectroscopy. Interestingly, the kinetic profile revealed a consistent increase in the observed rate constant values as the concentration of the surfactant increased.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) present a promising modality for numerous biological and medical applications, including therapeutics. Developing facile methods to engineer EVs is essential to meeting the rapidly expanding demand for various functionalized EVs in these applications. Herein, we developed a technology that integrates enzymatic glycoengineering and microfluidics for effective EV functionalization.

View Article and Find Full Text PDF

Effective first-row transition metal-based electrocatalysts are crucial for large-scale hydrogen energy generation and anion exchange membrane (AEM) devices in water splitting. The present work describes that SmNiFe-LDH nanosheets on nickel foam are used as a bifunctional electrocatalyst for water splitting and AEM water electrolyzer study. Tuning the Ni-to-Fe ratios in NiFe-LDH and doping with Sm ions improves the electrical structure and intrinsic activity.

View Article and Find Full Text PDF

Rationale: Incidence rates for pulmonary hypertension using diagnostic data in patients with cardiopulmonary disease are not known.

Objectives: To determine incidence rates of, risk factors for, and mortality hazard associated with pulmonary hypertension among patients referred for transthoracic echocardiography.

Methods: Retrospective cohort study using data from the Veterans Health Administration (1999-2020) and Vanderbilt University Medical Center (1994-2020).

View Article and Find Full Text PDF

Bayesian non-parametric methods based on Dirichlet process mixtures have seen tremendous success in various domains and are appealing in being able to borrow information by clustering samples that share identical parameters. However, such methods can face hurdles in heterogeneous settings where objects are expected to cluster only along a subset of axes or where clusters of samples share only a subset of identical parameters. We overcome such limitations by developing a novel class of product of Dirichlet process location-scale mixtures that enables independent clustering at multiple scales, which results in varying levels of information sharing across samples.

View Article and Find Full Text PDF

Fish oocyte maturation (FOM) is a critical biological process that occurs before ovulation and is influenced by gonadotropins, particularly luteinizing hormone (LH). The release of LH stimulates the ovarian follicle to produce a maturation-inducing hormone (MIH), specifically 17α, 20β-dihydroxy-4-pregnen-3-one (17α, 20β-DP), which initiates the formation of maturation-promoting factor (MPF) through the activation of cyclin B and cdc2 kinase. Insulin-like growth factor I (IGF-I) significantly regulates ovarian functions, including steroidogenesis, by activating its membrane receptors and the tyrosine kinase pathway.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the impact of tumor characteristics on the feasibility of endoscopic management (EM) for upper tract urothelial carcinoma (UTUC) by creating a standardized assessment score known as the Upper TRACT Endometry Score.
  • Utilizing expert opinions through a modified Delphi method, the score incorporates factors like tumor radius, architecture, count, and location, validating it with a retrospective database of patients undergoing EM for UTUC.
  • Results indicate a significant correlation between the Upper TRACT Endometry Score and the intensity of procedures required for patients, suggesting its potential for improving patient counseling and standardizing the assessment in future cases.
View Article and Find Full Text PDF